THE INHOMOGENEOUS MINIMA OF BINARY QUADRATIC FORMS (III)

By

E. S. BARNES and H. P. F. SWINNERTON-DYER

1. Introduction

Let \mathcal{L} be an inhomogeneous lattice of determinant $\Delta=\Delta(\mathcal{L})$ in the ξ, η-plane, i.e. a set of points given by

$$
\begin{align*}
& \xi=\xi_{0}+\alpha x+\beta y, \\
& \eta=\eta_{0}+\gamma x+\delta y, \tag{1.1}
\end{align*}
$$

where $\xi_{0}, \eta_{0}, \alpha, \beta, \gamma, \delta$ are real, $\Delta=|\alpha \delta-\beta \gamma| \neq 0$, and x, y take all integral values. In vector notation, \mathcal{L} is the set of points

$$
P=P_{0}+x A+y B
$$

where the lattice vectors $A=(\alpha, \gamma)$ and $B=(\beta, \delta)$ are said to generate \mathcal{L}. It is clear that \mathcal{L} has infinitely many pairs A, B of generators. Corresponding to any such pair and any point P_{0} of \mathcal{L}, we call the parallelogram with vertices $P_{0}, P_{0}+A, P_{0}+B$, $P_{0}+A+B$ a cell of \mathcal{L} : a parallelogram with vertices at points of \mathcal{L} is a cell of \mathcal{L} if and only if it has area Δ.

A cell is said to be divided if it has one vertex in each of the four quadrants. Delauney [5] has proved that if \mathcal{L} has no point on either of the coordinate axes $\xi=0, \eta=0$, then \mathcal{L} has at least one divided cell ${ }^{1}$; we outline his proof in $\S 2$. We then develop an algorithm for finding a new divided cell from a given one, thus obtaining in general ${ }^{2}$ a chain of divided cells $A_{n} B_{n} C_{n} D_{n}(-\infty<n<\infty)$. The analytical

[^0]
[^0]: ${ }^{1}$ This result fills the gap, noted by Cassels [3], in the very simple proof of Minkowski's theorem on the product of two inhomogeneous linear forms given by Sawyer [6].
 ${ }^{2}$ The condition that the chain does not break off is simply that \mathcal{L} shall have no lattice-vector parallel to a coordinate axis.

