THE INHOMOGENEOUS MINIMA OF BINARY QUADRATIC FORMS (III)

BY

E. S. BARNES and H. P. F. SWINNERTON-DYER

1. Introduction

Let \mathcal{L} be an inhomogeneous lattice of determinant $\Delta = \Delta(\mathcal{L})$ in the ξ , η -plane, i.e. a set of points given by

$$\begin{split} \xi &= \xi_0 + \alpha \, x + \beta \, y, \\ \eta &= \eta_0 + \gamma \, x + \delta \, y, \end{split} \tag{1.1}$$

where ξ_0 , η_0 , α , β , γ , δ are real, $\Delta = |\alpha \delta - \beta \gamma| \neq 0$, and x, y take all integral values. In vector notation, \mathcal{L} is the set of points

$$P = P_0 + xA + yB,$$

where the lattice vectors $A = (\alpha, \gamma)$ and $B = (\beta, \delta)$ are said to generate \mathcal{L} . It is clear that \mathcal{L} has infinitely many pairs A, B of generators. Corresponding to any such pair and any point P_0 of \mathcal{L} , we call the parallelogram with vertices $P_0, P_0 + A, P_0 + B$, $P_0 + A + B$ a *cell* of \mathcal{L} : a parallelogram with vertices at points of \mathcal{L} is a cell of \mathcal{L} if and only if it has area Δ .

A cell is said to be *divided* if it has one vertex in each of the four quadrants. Delauney [5] has proved that if \mathcal{L} has no point on either of the coordinate axes $\xi = 0$, $\eta = 0$, then \mathcal{L} has at least one divided cell¹; we outline his proof in § 2. We then develop an algorithm for finding a new divided cell from a given one, thus obtaining in general² a chain of divided cells $A_n B_n C_n D_n$ ($-\infty < n < \infty$). The analytical

¹ This result fills the gap, noted by CASSELS [3], in the very simple proof of Minkowski's theorem on the product of two inhomogeneous linear forms given by SAWYER [6].

² The condition that the chain does not break off is simply that \mathcal{L} shall have no lattice-vector parallel to a coordinate axis.