THE INHOMOGENEOUS MINIMUM OF A TERNARY QUADRATIC FORM

BY

E. S. BARNES

1. Let $Q(x, y, z)$ be an indefinite ternary quadratic form with real coefficients and determinant $D \neq 0$. Davenport [4] has shown that, given any real numbers x_{0}, y_{0}, z_{0}, there exist x, y, z congruent (modulo 1) to x_{0}, y_{0}, z_{0} satisfying

$$
\begin{equation*}
|Q(x, y, z)| \leq\left(\frac{27}{100}|D|\right)^{\frac{1}{2}} ; \tag{1.1}
\end{equation*}
$$

the equality sign can hold if and only if Q is equivalent (under integral unimodular transformation of the variables) to a multiple of the form

$$
Q_{1}(x, y, z)=x^{2}+5 y^{2}-z^{2}+5 y z+z x .
$$

The main weapon used in the proof was a generalization of Minkowski's result on the inhomogeneous minimum of a binary quadratic form, namely:

If $f(x, y)$ is a binary quadratic form with real coefficients and discriminant Δ^{2}, where $\Delta>0$, and $\mu>0, \nu>0, \mu \nu \geq \frac{1}{16}$, then, for any real numbers x_{0}, y_{0}, there exist $x, y \equiv x_{0}, y_{0}(\bmod 1)$ satisfying

$$
\begin{equation*}
-\boldsymbol{v} \Delta \leq f(x, y) \leq \mu \Delta \tag{1.2}
\end{equation*}
$$

By obtaining an 'isolation' of this inequality when ν is approximately 2μ, Davenport was able to show that the result (1.1) is isolated: that is to say, there exists a positive constant δ such that the inequality

$$
\begin{equation*}
|Q(x, y, z)| \leq(1-\delta)\left(\frac{27}{100}|D|\right)^{\frac{t}{t}} \tag{1.3}
\end{equation*}
$$

can be satisfied whenever Q is not equivalent to a multiple of the special form Q_{1}.

