NON-HOMOGENEOUS BINARY QUADRATIC FORMS. ${ }^{1}$

II. The second minimum of $\left(x+x_{0}\right)^{2}-7\left(y+y_{0}\right)^{2}$.

By
R. P. BAMBAH.
St. John's College, Cambridg

Introduction.

1. In a previous paper ${ }^{2}$ we showed that for all real x_{0}, y_{0}, there exist integers x, y for which

$$
\left|f\left(x+x_{0}, y+y_{0}\right)\right|=\left|\left(x+x_{0}\right)^{2}-7\left(y+y_{0}\right)^{2}\right| \leq \frac{9}{14}
$$

We further showed that for $\left(x_{0}, y_{0}\right) \neq\left(\frac{1}{2}, \pm \frac{5}{14}\right)$, we can make $\left|f\left(x+x_{0}, y+y_{0}\right)\right|$ less than $\frac{1}{1.56}$. In this paper we modify our method with the help of a lemma, due to Dr. J. W.S. Cassels, to prove that the exact value of the second minimum is $\frac{1}{2}$. Our argument is purely geometrical and, as Dr. Cassels pointed out to the author, this seems to be the first time a purely geometrical argument has been applied to the study of the second minimum of a non-homogeneous form.

Our result can be stated as
Theorem: Let $f(x, y)=x^{2}-7 y^{2}$. Then, for any pair of real numbers x_{0}, y_{0}, there exist numbers x, y such that

$$
\begin{equation*}
x \equiv x_{0}(\bmod .1) \quad y \equiv y_{0}(\bmod .1) \tag{1}
\end{equation*}
$$

and
(2)

$$
|f(x, y)| \leq \frac{9}{14}
$$

[^0]
[^0]: ${ }^{1}$ This paper forms a part of author's thesis: Some Results in the Geometry of Numbers: approved for the degree of Ph.D, at the University of Cambridge.
 ${ }^{2}$ Non-homogeneous Binary Quadratic Forms (I): Acta mathematica, this vol. p. 1. We shall refer to this paper as NHF. For references also see NHF.

