NON-HOMOGENEOUS BINARY QUADRATIC FORMS.¹

II. The second minimum of $(x + x_0)^2 - 7 (y + y_0)^2$.

By

R. P. BAMBAH,

ST. JOHN'S COLLEGE, CAMBRIDG

Introduction.

I. In a previous paper² we showed that for all real x_0, y_0 , there exist integers x, y for which

$$|f(x + x_0, y + y_0)| = |(x + x_0)^2 - 7(y + y_0)^2| \le \frac{9}{14}$$

We further showed that for $(x_0, y_0) \neq \left(\frac{1}{2}, \pm \frac{5}{14}\right)$, we can make $|f(x + x_0, y + y_0)|$ less than $\frac{1}{1.56}$. In this paper we modify our method with the help of a lemma, due to Dr. J. W. S. Cassels, to prove that the exact value of the second minimum is $\frac{1}{2}$. Our argument is purely geometrical and, as Dr. Cassels pointed out to the author, this seems to be the first time a purely geometrical argument has been applied to the study of the second minimum of a non-homogeneous form.

Our result can be stated as

Theorem: Let $f(x, y) = x^2 - 7y^2$. Then, for any pair of real numbers x_0, y_0 , there exist numbers x, y such that

(1)
$$x \equiv x_0 \pmod{1} \quad y \equiv y_0 \pmod{1}$$

and

(2)
$$|f(x, y)| \le \frac{9}{14}$$

¹ This paper forms a part of author's thesis: Some Results in the Geometry of Numbers: approved for the degree of Ph.D. at the University of Cambridge.

² Non-homogeneous Binary Quadratic Forms (I): Acta mathematica, this vol. p. 1. We shall refer to this paper as NHF. For references also see NHF.