NON-HOMOGENEOUS BINARY QUADRATIC FORMS. ${ }^{1}$

I. Two Theorems of Varnavides.

By
R. P. BAMBAB
st. John's college, cambridge.

Introduction.

1. Let $f(x, y)$ be an indefinite binary quadratic form $a x^{2}+b x y+c y^{2}$, with positive discriminant $d=b^{2}-4 a c$. A well-known theorem of Minkowski states that, for any real numbers x_{0}, y_{0}, there exist integers x, y such that

$$
\left|f\left(x+x_{0}, y+y_{0}\right)\right| \leq \frac{\mathrm{I}}{4} \sqrt{d}
$$

the sign of equality being necessary if and only if $f(x, y)$ is equivalent to a multiple of $x y$.

Heinhold [I], Davenport [r], Varnavides [r] and Barnes [r] have found better estimates for the minimum for non-critical f.

Recently Davenport [2,3,4] studied the special forms $x^{2}+x y-y^{2}$ and $5 x^{2}-$ II $x y-5 y^{2}$ and obtained interesting results about their minima. Varnavides $[2,3,4]$ applied Davenport's method to the forms $x^{2}-2 y^{2}, x^{2}-7 y^{2}$, and x^{2} - II y^{2}. In this note we give straight-forward geometrical proofs of Varnavides' results about the forms $x^{2}-7 y^{2}$ and $x^{2}-11 y^{2}$.

The results we prove can be stated as
Theorem 1: Let $f(x, y)=x^{2}-7 y^{2}$. Then given any two real numbers x_{0}, y_{0} we can find x, y such that
(1.I) $\quad x \equiv x_{0}(\bmod .1), y \equiv y_{0}(\bmod . \mathrm{I})$
and
(1.2) $|f(x, y)| \leq \frac{9}{14}$.

[^0]
[^0]: ${ }^{1}$ This note forms a part of author's thesis: Some Kesults in the Geometry of Numbers: approved for the degree of Ph, D. at the University of Cambridge.

