Acta Math., 177 (1996), 1–53 © 1996 by Institut Mittag-Leffler. All rights reserved

On the p-typical curves in Quillen's K-theory

by

LARS HESSELHOLT

Massachusetts Institute of Technology Cambridge, MA, U.S.A.

Contents

Introduction	1
1. The complex $\operatorname{TR}_*(A; p)$	5
2. Smooth algebras	21
3. Typical curves in K-theory	34
References	52

Introduction

Twenty years ago Bloch, [Bl], introduced the complex $C_*(A; p)$ of *p*-typical curves in *K*-theory and outlined its connection to the crystalline cohomology of Berthelot– Grothendieck. However, to prove this connection Bloch restricted his attention to the symbolic part of *K*-theory, since only this admitted a detailed study at the time. In this paper we evaluate $C_*(A; p)$ in terms of the fixed sets of Bökstedt's topological Hochschild homology. Using this we show that for any smooth algebra *A* over a perfect field *k* of positive characteristic, $C_*(A; p)$ is isomorphic to the de Rham–Witt complex of Bloch– Deligne–Illusie. This confirms the outlined relationship between *p*-typical curves in *K*theory and crystalline cohomology in the smooth case. In the singular case, however, we get something new. Indeed, we calculate $C_*(A; p)$ for the ring $k[t]/(t^2)$ of dual numbers over *k* and show that in contrast to crystalline cohomology, its cohomology groups are finitely generated modules over the Witt ring W(k).

Let A be a ring, by which we shall always mean a commutative ring, and let K(A) denote the algebraic K-theory spectrum of A. More generally, if $I \subset A$ is an ideal, K(A, I) denotes the relative algebraic K-theory, that is, the homotopy theoretical fiber of the map $K(A) \rightarrow K(A/I)$. We define the curves on K(A) to be the homotopy limit of spectra

$$C(A) = \underbrace{\operatorname{holim}}_{n} \Omega K(A[X]/(X^{n}), (X)).$$