The surface C-C on Jacobi varieties and 2nd order theta functions

by

GERALD E. WELTERS

Universidad de Barcelona Barcelona, Spain

Introduction

In their preprint [4], B. van Geemen and G. van der Geer stated four conjectures dealing with the modular significance of the surface C-C on a Jacobi variety. The first of these conjectures can be rephrased as follows:

(0.1) Conjecture ([4]). Let X be the jacobian of an irreducible non-singular algebraic curve C over $k=\mathbb{C}$, of genus $g \ge 1$. Let Γ_{00} be the vector space of sections of $\mathcal{O}_X(2\Theta)$ (Θ a symmetric theta divisor) having a zero of multiplicity at least 4 at $0 \in X$, and write $F_X = \{x \in X | s(x) = 0 \text{ for all } s \in \Gamma_{00}\}$. Then $F_X = \{x - y | x, y \in C\}$.

In loc. cit. the above authors give several partial results in this direction. Quite simultaneously, R. C. Gunning considered also this question in his paper [8], getting partial results, too (cf. also (2.1) below). Thirdly, in his bok [13], D. Mumford asked (we change some notations):

(0.2) Question ([13], p. 3.238). If D is a divisor class of degree 0 on C such that for all divisors E of degree g-1 for which |E| is a pencil, then either $|D+E| \neq \emptyset$ or $|-D+E| \neq \emptyset$, then does it follow that $D \equiv a-b$ for some $a, b \in C$?

By standard reasons (cf. \S 2), a positive answer to (0.2) would imply (0.1). (Actually, the answer to (0.2) is known to be negative if C is a trigonal curve.)

In this connection it is natural to ask also:

(0.3) Question. If D is a divisor class of degree 0 on C such that for all divisors E of degree g-1 for which |E| is a pencil, then $|D+E| \neq \emptyset$, then does it follow that $D \equiv a-b$ for some $a, b \in C$?

¹⁻⁸⁶⁸²⁸⁵ Acta Mathematica 157. Imprimé le 15 octobre 1986