# The zero multiplicity of linear recurrence sequences 

by<br>WOLFGANG M. SCHMIDT<br>University of Colorado at Boulder Boulder, Colorado, U.S.A.

## 1. Introduction

A linear recurrence sequence of order $t$ is a sequence $\left\{u_{n}\right\}_{n \in \mathbb{Z}}$ of complex numbers satisfying a relation

$$
\begin{equation*}
u_{n}=c_{1} u_{n-1}+\ldots+c_{t} u_{n-t} \quad(n \in \mathbb{Z}) \tag{1.1}
\end{equation*}
$$

with $t>0$ and fixed coefficients $c_{1}, \ldots, c_{t}$, but no relation with fewer than $t$ summands, i.e., no relation $u_{n}=c_{1}^{\prime} u_{n-1}+\ldots+c_{t-1}^{\prime} u_{n-t+1}$. This implies in particular that the sequence is not the zero sequence, and that $c_{t} \neq 0$. The companion polynomial of the relation (1.1) is

$$
\mathcal{P}(z)=z^{t}-c_{1} z^{t-1}-\ldots-c_{t}
$$

Write

$$
\begin{equation*}
\mathcal{P}(z)=\prod_{i=1}^{k}\left(z-\alpha_{i}\right)^{a_{i}} \tag{1.2}
\end{equation*}
$$

with distinct roots $\alpha_{1}, \ldots, \alpha_{k}$. The sequence is said to be nondegenerate if no quotient $\alpha_{i} / \alpha_{j}(1 \leqslant i<j \leqslant k)$ is a root of 1 . The zero multiplicity of the sequence is the number of $n \in \mathbb{Z}$ with $u_{n}=0$. For an introduction to linear recurrences and exponential equations, see [10].

A classical theorem of Skolem-Mahler-Lech [4] says that a nondegenerate linear recurrence sequence has finite zero multiplicity. Schlickewei [6] and van der Poorten and Schlickewei [5] derived upper bounds for the zero multiplicity when the members of the sequence lie in a number field $K$. These bounds depended on the order $t$, the degree of $K$, as well as on the number of distinct prime ideal factors in the decomposition of the fractional ideals $\left(\alpha_{i}\right)$ in $K$. More recently, Schlickewei [7] gave bounds which depend

[^0]
[^0]:    The author was partially supported by NSF Grant DMS-9710314.

