Counting congruence subgroups

by
DORIAN GOLDFELD ALEXANDER LUBOTZKY and
LÁSZLÓ PYBER
Hungarian Academy of Sciences
Budapest, Hungary

0. Introduction

Let k be an algebraic number field, \mathcal{O} its ring of integers, S a finite set of valuations of k (containing all the archimedean ones), and $\mathcal{O}_{S}=\{x \in k \mid v(x) \geqslant 0$ for all $v \notin S\}$. Let G be a semisimple, simply-connected, connected algebraic group defined over k with a fixed embedding into GL_{d}. Let $\Gamma=G\left(\mathcal{O}_{S}\right)=G \cap \mathrm{GL}_{d}\left(\mathcal{O}_{S}\right)$ be the corresponding S-arithmetic group. We assume that Γ is an infinite group (equivalently, $\prod_{\nu \in S} G\left(k_{\nu}\right)$ is not compact).

For every non-zero ideal I of \mathcal{O}_{S} let

$$
\Gamma(I)=\operatorname{Ker}\left(\Gamma \rightarrow \mathrm{GL}_{d}\left(\mathcal{O}_{S} / I\right)\right)
$$

A subgroup of Γ is called a congruence subgroup if it contains $\Gamma(I)$ for some I.
The topic of counting congruence subgroups has a long history. Classically, congruence subgroups of the modular group were counted as a function of the genus of the associated Riemann surface. It was conjectured by Rademacher that there are only finitely many congruence subgroups of $\mathrm{SL}_{2}(\mathbf{Z})$ of genus zero. Petersson [Pe] proved that the number of all subgroups of index n and fixed genus goes to infinity exponentially as $n \rightarrow \infty$. Dennin [De] proved that there are only finitely many congruence subgroups of $\mathrm{SL}_{2}(\mathbf{Z})$ of given fixed genus and solved Rademacher's conjecture. A quantitative result was proved by Thompson [T] and Cox-Parry [CP] who showed (among other interesting results) that

$$
\lim \frac{\operatorname{genus}(\Lambda)}{\left[\mathrm{SL}_{2}(\mathbf{Z}): \Lambda\right]}=\frac{1}{12},
$$

where the limit goes over congruence subgroups Λ of $\mathrm{SL}_{2}(\mathbf{Z})$ with index going to ∞. It does not seem possible, however, to accurately count all congruence subgroups of index at most r in $\mathrm{SL}_{2}(\mathbf{Z})$ by using the theory of Riemann surfaces of fixed genus.

[^0]
[^0]: The first two authors' research is supported in part by the NSF. The third author's research is supported in part by OTKA T 034878. All three authors would like to thank Yale University for its hospitality.

