A global calculus of parameter-dependent pseudodifferential boundary problems in L_p Sobolev spaces

by

and

GERD GRUBB

University of Copenhagen Copenhagen, Denmark NIELS JØRGEN KOKHOLM

University of Copenhagen Copenhagen, Denmark

Introduction

The theory of pseudodifferential boundary problems has been developed to provide a larger framework for the study of differential boundary value problems, allowing algebraic manipulations with the operators (reflected in a symbolic calculus) and allowing the inclusion of non-local terms. The elliptic calculus has its origin in works of Vishik, Èskin and Boutet de Monvel (cf. [V-E], [E], [BM1] and in particular the Acta article [BM2]) and was further developed e.g. in Rempel and Schulze [R-S1] and Grubb [G1]. The scope of the theory was enlarged by the consideration of systems depending on a parameter (running in a noncompact set), which can be for example a spectral parameter $\lambda \in \mathbb{C}$ (allowing functional calculus), a time dependence (for parabolic problems) or a small parameter $\varepsilon > 0$ (entering in singular perturbation problems). For operators in L_2 spaces, such a theory was worked out in the book [G2], and further developed for parabolic problems by Grubb and Solonnikov [G-S1], who applied it to give new results on fully nonhomogeneous Navier–Stokes problems (cf. [G-S2] and its references). Let us also mention the treatment in [R-S2] of resolvent estimates and complex powers for systems without the so-called transmission property.

The purpose of the present work is to extend the parameter-dependent calculus to the L_p setting, $1 , and to a suitable class of unbounded manifolds, including exterior domains (complements of smooth compact sets) in <math>\mathbf{R}^n$ and $\overline{\mathbf{R}}^n_+$.

A fundamental difficulty in the study of parameter-dependent elliptic pseudodifferential problems, depending e.g. on a spectral parameter λ on a ray in **C**, is the following: Without the parameter, the singularity of the homogeneous symbols at $\xi=0$ is harmless (since it is felt in a compact set only), but when λ is adjoined, the singularity has an