A GENERAL FIRST MAIN THEOREM OF VALUE DISTRIBUTION. II

BY

WILHELM STOLL
University of Notre Dame, Notre Dame, Indiana, U.S,A. (1)
Dedicated to Marilyn Stoll

§ 3. The Levine form

Let V be a complex vector space of dimension $n+1$ with $n \in \mathbf{N}$. Suppose that a Hermitian product (|) is given on V. On each $V[p]$, an associated Hermitian product (|) is induced such that for every orthonormal base $\mathfrak{a}=\left(a_{0}, \ldots, a_{p}\right)$ the set

$$
\left\{\mathfrak{a}_{\varphi(\mathbf{1})} \wedge \ldots \wedge \mathfrak{a}_{\varphi(p)} \mid \varphi \in \mathfrak{T}(p, n+1)\right\}
$$

defines an orthonormal base of $V[p]$. If $0 \neq \mathfrak{x} \in V[p+1]$ and $0 \neq \mathfrak{y} \in V[q+1]$ with $p+q \leqslant n-1$, then the projective distance from \mathfrak{x} to \mathfrak{y} is defined by

$$
\|\mathfrak{x}: \mathfrak{y}\|=\frac{|\mathfrak{x} \wedge \mathfrak{y}|}{|\mathfrak{x}||\mathfrak{y}|}
$$

If $\boldsymbol{\xi} \in \mathbf{P}(V[p+1])$ and $v \in \mathbf{P}(V[q+1])$, then the projective distance from ξ to v is well-defined by

$$
\|\xi: v\|=\|\mathfrak{x}: \mathfrak{y}\| \quad \text { if } \quad \varrho(\mathfrak{x})=\xi \text { and } \varrho(\mathfrak{y})=v,
$$

where ϱ are the respective projections. Especially, this projective distance is defined as a real analytic function on $\mathscr{J b}^{p}(V) \times{ }^{(5)}(V)$ with

$$
0 \leqslant\|\xi: v\| \leqslant 1 \text { if }(\xi, v) \in \mathbb{S}^{p}(V) \times \mathscr{S}^{q}(V) .
$$

In the following, the vector space $V, V[p+1], V[p+2]$ and C^{r} with $n-p=r$ will be considered. The natural projections are denoted by
(1) This research was partially supported by the National Science Foundation under grant NSF GP-3988.
10-672906 Acta mathematica. 118. Imprimé le 19 juin 1967.

