A GENERAL FIRST MAIN THEOREM OF VALUE DISTRIBUTION. II

BY

WILHELM STOLL

University of Notre Dame, Notre Dame, Indiana, U.S.A. (1)

Dedicated to Marilyn Stoll

§ 3. The Levine form

Let V be a complex vector space of dimension n+1 with $n \in \mathbb{N}$. Suppose that a Hermitian product (|) is given on V. On each V[p], an associated Hermitian product (|) is induced such that for every orthonormal base $\mathfrak{a} = (\mathfrak{a}_0, ..., \mathfrak{a}_p)$ the set

$$\{\mathfrak{a}_{\varphi(1)} \wedge \ldots \wedge \mathfrak{a}_{\varphi(p)} | \varphi \in \mathfrak{T}(p, n+1)\}$$

defines an orthonormal base of V[p]. If $0 \neq \mathfrak{x} \in V[p+1]$ and $0 \neq \mathfrak{y} \in V[q+1]$ with $p+q \leq n-1$, then the *projective distance* from \mathfrak{x} to \mathfrak{y} is defined by

$$\|\mathbf{x}:\mathbf{y}\| = \frac{|\mathbf{x} \wedge \mathbf{y}|}{|\mathbf{x}| |\mathbf{y}|}$$

If $\xi \in \mathbb{P}(V[p+1])$ and $v \in \mathbb{P}(V[q+1])$, then the projective distance from ξ to v is well-defined by

 $\|\xi:v\| = \|\mathfrak{x}:\mathfrak{y}\|$ if $\varrho(\mathfrak{x}) = \xi$ and $\varrho(\mathfrak{y}) = v$,

where ρ are the respective projections. Especially, this projective distance is defined as a real analytic function on $\mathfrak{G}^p(V) \times \mathfrak{G}^q(V)$ with

$$0 \leq \|\boldsymbol{\xi} : \boldsymbol{v}\| \leq 1 \text{ if } (\boldsymbol{\xi}, \boldsymbol{v}) \in \mathfrak{G}^{p}(V) \times \mathfrak{G}^{q}(V).$$

In the following, the vector space V, V[p+1], V[p+2] and C' with n-p=r will be considered. The natural projections are denoted by

⁽¹⁾ This research was partially supported by the National Science Foundation under grant NSF GP-3988.

¹⁰⁻⁶⁷²⁹⁰⁶ Acta mathematica. 118. Imprimé le 19 juin 1967.