The density of integer points on homogeneous varieties

by
WOLFGANG M. SCHMIDT(${ }^{(}$)
University of Colorado
Boulder, CO, U.S.A.

A. The setting

1. Introduction

Let V be a homogeneous algebraic set in \mathbf{C}^{s} defined over the rationals, i.e. a set

$$
V=V\left(\mathfrak{F}_{\mathfrak{W}}\right)=V\left(\mathfrak{F}_{1}, \ldots, \mathfrak{F}_{r}\right),
$$

consisting of the common zeros of given forms $\mathfrak{F}_{1}, \ldots, \mathfrak{F}_{r}$ of positive degrees, in s variables, and with rational coefficients. We are interested in

$$
z_{P}(V)=z_{P}(\underset{\mathfrak{F}}{ }),
$$

the number of integer points $\underline{x}=\left(x_{1}, \ldots, x_{s}\right)$ on V with

$$
|\underline{x}|:=\max \left(\left|x_{1}\right|, \ldots,\left|x_{s}\right|\right) \leqslant P
$$

Not much is known in general about the behaviour of $z_{P}(V)$ as a function of P. In those cases where we do have information and where $z_{P}(V) \rightarrow \infty$ (i.e. where V contains an integer point besides $\mathbf{0}$) we have

$$
z_{P}(V) \sim \mu P^{\beta}
$$

where $\mu>0, \beta>0$ and β is an integer.
Birch [1] could show that a system \mathfrak{F} of r forms of odd degrees $\leqslant k$ in $s>c_{1}(k, r)$ variables possesses a nontrivial integer zero. In particular, $z_{P}(\underset{\sim}{\mathfrak{Y}}) \rightarrow \infty$. It would be easy
${ }^{(1)}$) Partially supported by NSF-MCS-8015356.

