SUR L'APPROXIMATION D'UNE FONCTION PÉRIODIQUE ET DE SES DÉRIVÉES SUCCESSIVES PAR UN POLYNOME TRIGONO-MÉTRIQUE ET PAR SES DÉRIVÉES SUCCESSIVES

PAR

J. CZIPSZER ET G. FREUD

Institut de Mathématique de l'Académie des Sciences de Hongrie, Budapest

Introduction

Cet article sera consacré au problème suivant: f(x) étant une fonction périodique de période 2π qui admet une k-ième dérivée continue (k=1, 2, ...) et $P_n(x)$ un polynome trigonométrique d'ordre n qui approche f(x) à ε près:

$$\max |f(x) - P_n(x)| \le \varepsilon, \tag{1}$$

quelle estimation supérieure peut-on donner pour la quantité

$$\max |f^{(k)}(x) - P_n^{(k)}(x)|?$$

Il est clair que la seule connaissance de ε ne suffit pas à résoudre ce problème. Mais si nous considérons la quantité $E_n(f^{(k)})$ (1) comme donnée, alors nous pouvons énoncer la proposition suivante:

$$\max |f^{(k)}(x) - P_n^{(k)}(x)| \le c_1(k) [n^k \varepsilon + E_n(f^{(k)})]$$
 (2)

où $c_1(k)$ est une constante qui ne dépend que de k (voir le théorème 1° du $\S.1$). L'inégalité (2) admet une localisation que nous présenterons dans le $\S.2$.

On obtient des inégalités d'une forme plus simple si l'on mesure l'écart de la fonction du polynome trigonométrique d'ordre n relativement à la meilleure approximation trigonométrique d'ordre n, c'est-à-dire si l'on compare les quantités

⁽¹⁾ Pour les notations voir la fin de cette Introduction.