ON NON-LINEAR DIFFERENTIAL EQUATIONS OF THE SECOND ORDER: III. THE EQUATION $\ddot{y}-k\left(1-y^{2}\right) \dot{y}+y=b_{\mu} k \cos (\mu t+\alpha)$
 FOR LARGE k, AND ITS GENERALIZATIONS

BY

J. E. LITTLEWOOD

in Cambridge

Introduction ${ }^{1}$

1. We are concerned with equations in real variables of the form

$$
\ddot{y}+f(y) \dot{y}+g(y)=p(t),
$$

where \mathcal{f}, g, p are smooth functions of their arguments, and p has period $\lambda=2 \pi / \mu$ in t. About f we suppose that $\lim f>0$ as $y \rightarrow \pm \infty$; that is to say, we suppose the "damping" to be positive for large $|y|$. About g we suppose that it has a "restoring" effect, i.e. has the sign of y. The simplest case, and a specially important one, to be covered in any generalization, is $g=a y$ for positive a. We do in fact assume always that $g(0)=0$, and that g^{\prime} exists and has a positive lower bound.

There is some general theory of such equations. A trajectory (or "motion") with initial conditions $y\left(t_{0}\right)=\xi, \dot{y}\left(t_{0}\right)=\eta\left(\xi, \eta\right.$ real) at some fixed $t=t_{0}$ is said to have the point $P=(\xi, \eta)$ as "representative point". If ξ ', η^{\prime} are the values of y, \dot{y} at $t=t_{0}+\lambda$ the transformation T from P to $P^{\prime}=\left(\xi^{\prime}, \eta^{\prime}\right)=T P=T(\xi, \eta)$ is $1-1$ and continuous.

With the condition $\lim f>0$ and suitable conditions on g (fulfilled for $g=y$), every trajectory is bounded as $t \rightarrow \infty$, and T transforms a suitable large domain in the P space into a domain contained in the original one. Further, the vector V, or $P \rightarrow T P$, makes exactly one revolution as P moves positively round the boundary. Then a "fixed point" theorem holds, and the "index number" proof of it is valid. ${ }^{2}$

[^0]
[^0]: 1 This paper is based on joint work with M. L. Cartwright.
 A paper I, with the same general title, was published in the Journal London Math. Soc., 20 (1945), 180-189, jointly with M. L. Cartwright. This was written with the same aims as the present Introduction, but in drastically condensed form. We have borrowed some passages from it.
 ${ }^{2}$ N. Levinson, Journal of Math. and Physics, 22 (1943), 41-48, and Annals of Math., 45 (1945), 723-727.

