LOCALLY HOMOGENEOUS COMPLEX MANIFOLDS

BY

PHILLIP GRIFFITHS and WILFRIED SCHMID

Princeton University, Princeton, N.J. and Columbia University, New York, N.Y. (1)

In this paper we discuss some geometric and analytic properties of a class of locally homogeneous complex manifolds. Our original motivation came from algebraic geometry where certain non-compact, homogeneous complex manifolds arose naturally from the period matrices of general algebraic varieties in a similar fashion to the appearance of the Siegel upper-half-space from the periods of algebraic curves. However, these manifolds are generally *not* Hermitian symmetric domains and, because of this, several interesting new phenomena turn up.

The following is a description of the manifolds we have in mind. Let $G_{\mathbb{C}}$ be a connected, complex semi-simple Lie group and $B \subseteq G_{\mathbb{C}}$ a parabolic subgroup. Then, as is well known, the coset space $X = G_{\mathbb{C}}/B$ is a compact, homogeneous algebraic manifold. If $G \subseteq G_{\mathbb{C}}$ is a connected real form of $G_{\mathbb{C}}$ such that $G \cap B = V$ is compact, then the G-orbit of the origin in X is a connected open domain $D \subseteq X$, and D = G/V is therefore a homogeneous complex manifold. Let $\Gamma \subseteq G$ be a discrete subgroup such that the normalizer $N(\Gamma)$ intersects V only in the identity. Since Γ acts properly discontinuously without fixed points on D, the quotient space $Y = \Gamma \setminus D$ inherits the structure of a complex manifold. We shall refer to a manifold of this type as a locally homogeneous complex manifold.

One case is when G=M is a maximal compact subgroup of $G_{\mathbb{C}}$. Then necessarily $\Gamma = \{e\}$, and D=X is the whole compact algebraic manifold. These varieties have been the subject of considerable study, and their basic properties are well known. The opposite extreme occurs when G has no compact factors. These non-compact homogeneous domains D then include the Hermitian symmetric spaces, about which quite a bit is known, and also include important and interesting non-classical domains which have been discussed relatively little. It is these manifolds which are our main interest; however, since the

⁽¹⁾ During the preparation of this paper, the first named author was partially supported by NSF grant GP-7952X at the Institute for Advanced Study, and the second named author by NSF grant GP-8008 at the University of California, Berkeley.