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1. Suppose given in the complex w-plane a simply connected domain 9 ,  which is not 

the whole plane, and let w =](z) be a function mapping the open unit disc D in the z-plane 

one-to-one and conformally onto 9 .  As is well known, for almost every 0 (0~<0 <2g) , / (z)  

has a finite angular l imi t / (e  ~~ at  e ~~ tha t  is, for any  open triangle A contained in D and 

having one ver tex at  e ~~ ~~ as z-->e ~a, z E A. An arc at e ~a is a curve A ~ D such tha t  

A U {e l~ is a Jordan  are. As a preliminary form of our main result (Theorem 2), we state 

THEOREM 1. For almost every 0 either 

/ ( z ) - / ( e  ~~ and/ ' ( z )  have the same/ini te ,  nonzero angular limit at e i~ 
Z -- e ~~ 

(1.1) 

or arg (/(z)-/(et~ de/ined and continuous in D, is unbounded above and below 

on each arc at e ~~ (1.2) 

Note tha t  if (1.1) holds, the mapping is isogonal at  e l~ in the sense tha t  

arg ( ] ( z ) - / (e i~  (z-e~~ 

where both argument  functions are defined and continuous in D, has a finite angular limit 

a t  e ~~ 

I f  ](z) has a finite angular limit a t  e ~~ then the image under / (z)  of the radius a t  e ~~ 

determines an (ideal) accessible boundary point a0 of 9 whose complex coordinate W(ao) = 

](e f~ is finite. The set of all such a0 is denoted by 9~. On 9 U 9~ we use the relative metric, 

the relative distance between two points of 9 0 9~ being defined as the infimum of the 

Euclidean diameters of the open Jordan  arcs tha t  lie in 9 and join these two points. Any 

limits involving accessible boundary points are taken  in this relative metric. 
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