BOUNDARY BEHAVIOR OF A CONFORMAL MAPPING

BY
J. E. McMILLAN
The University of Wisconsin-Milwaukee, Milwaukee, Wis., U.S.A. (1)

1. Suppose given in the complex w-plane a simply connected domain \mathcal{D}, which is not the whole plane, and let $w=f(z)$ be a function mapping the open unit disc D in the z-plane one-to-one and conformally onto \mathcal{D}. As is well known, for almost every $\theta(0 \leqslant \theta<2 \pi), f(z)$ has a finite angular limit $f\left(e^{i \theta}\right)$ at $e^{i \theta}$, that is, for any open triangle Δ contained in D and having one vertex at $e^{i \theta}, f(z) \rightarrow f\left(e^{i \theta}\right)$ as $z \rightarrow e^{i \theta}, z \in \Delta$. An arc at $e^{i \theta}$ is a curve $A \subset D$ such that $A \cup\left\{e^{i \theta}\right\}$ is a Jordan arc. As a preliminary form of our main result (Theorem 2), we state

Theorem 1. For almost every θ either

$$
\begin{equation*}
\frac{f(z)-f\left(e^{i \theta}\right)}{z-e^{i \theta}} \text { and } f^{\prime}(z) \text { have the same finite, nonzero angular limit at } e^{i \theta}, \tag{1.1}
\end{equation*}
$$

or $\arg \left(f(z)-f\left(e^{i \theta}\right)\right)$, defined and continuous in D, is unbounded above and below on each arc at $e^{i \theta}$.

Note that if (1.1) holds, the mapping is isogonal at $e^{i \theta}$ in the sense that

$$
\arg \left(f(z)-f\left(e^{i \theta}\right)\right)-\arg \left(z-e^{i \theta}\right),
$$

where both argument functions are defined and continuous in D, has a finite angular limit at $e^{i \theta}$.

If $f(z)$ has a finite angular limit at $e^{i \theta}$, then the image under $f(z)$ of the radius at $e^{i \theta}$ determines an (ideal) accessible boundary point \mathfrak{a}_{θ} of \mathcal{D} whose complex coordinate $w\left(\mathfrak{a}_{\theta}\right)=$ $f\left(e^{i \theta}\right)$ is finite. The set of all such \mathfrak{a}_{θ} is denoted by \mathfrak{A}. On $\mathcal{D} \cup \mathfrak{H}$ we use the relative metric, the relative distance between two points of $\mathcal{D} \cup \mathfrak{H}$ being defined as the infimum of the Euclidean diameters of the open Jordan arcs that lie in \mathcal{D} and join these two points. Any limits involving accessible boundary points are taken in this relative metric.

[^0]
[^0]: ${ }^{(1)}$ The author gratefully acknowledges the support of the Alfred P. Sloan Foundation and the National Science Foundation (N.S.F. grant GP-6538).

