BOUNDARY BEHAVIOR OF A CONFORMAL MAPPING

BY

J. E. MCMILLAN

The University of Wisconsin-Milwaukee, Milwaukee, Wis., U.S.A. (1)

1. Suppose given in the complex w-plane a simply connected domain \mathcal{D} , which is not the whole plane, and let w = f(z) be a function mapping the open unit disc D in the z-plane one-to-one and conformally onto \mathcal{D} . As is well known, for almost every θ ($0 \le \theta < 2\pi$), f(z)has a finite angular limit $f(e^{i\theta})$ at $e^{i\theta}$, that is, for any open triangle Δ contained in D and having one vertex at $e^{i\theta}$, $f(z) \rightarrow f(e^{i\theta})$ as $z \rightarrow e^{i\theta}$, $z \in \Delta$. An arc at $e^{i\theta}$ is a curve $A \subset D$ such that $A \cup \{e^{i\theta}\}$ is a Jordan arc. As a preliminary form of our main result (Theorem 2), we state

THEOREM 1. For almost every θ either

$$\frac{f(z) - f(e^{i\theta})}{z - e^{i\theta}} \text{ and } f'(z) \text{ have the same finite, nonzero angular limit at } e^{i\theta}, \qquad (1.1)$$

or $\arg(f(z) - f(e^{i\theta}))$, defined and continuous in D, is unbounded above and below on each arc at $e^{i\theta}$. (1.2)

Note that if (1.1) holds, the mapping is *isogonal* at $e^{i\theta}$ in the sense that

$$\arg (f(z) - f(e^{i\theta})) - \arg (z - e^{i\theta})$$

where both argument functions are defined and continuous in D, has a finite angular limit at $e^{i\theta}$.

If f(z) has a finite angular limit at $e^{i\theta}$, then the image under f(z) of the radius at $e^{i\theta}$ determines an (ideal) accessible boundary point a_{θ} of \mathcal{D} whose complex coordinate $w(a_{\theta}) = f(e^{i\theta})$ is finite. The set of all such a_{θ} is denoted by \mathfrak{A} . On $\mathcal{D} \cup \mathfrak{A}$ we use the *relative metric*, the relative distance between two points of $\mathcal{D} \cup \mathfrak{A}$ being defined as the infimum of the Euclidean diameters of the open Jordan arcs that lie in \mathcal{D} and join these two points. Any limits involving accessible boundary points are taken in this relative metric.

^{(&}lt;sup>1</sup>) The author gratefully acknowledges the support of the Alfred P. Sloan Foundation and the National Science Foundation (N.S.F. grant GP-6538).