SUBGROUPS OF IA AUTOMORPHISMS OF A FREE GROUP

BY

ORIN CHEIN

Temple University, Philadelphia, Penn., USA

1. Introduction

Generators and defining relations for the group A_n of automorphisms of a free group of rank *n* were derived by J. Nielsen [11]. For n=2, this is a fairly easy task, but for $n \ge 3$ it requires very difficult combinatorial arguments which have not been simplified since the appearance of Nielsen's paper. In order to obtain an easier approach to the investigation of A_n and a better understanding of its structure, it seems natural to study its subgroups.

For all n, the elements of A_n which induce the identical automorphism in the commutator quotient group F_n/F'_n form a normal subgroup K of A_n . Bachmuth [1] calls this the group of IA automorphisms of F_n . Magnus [8] showed that this subgroup is generated by the automorphisms

$$K_{ij}: a_i \to a_j a_i a_j^{-1}$$

$$a_k \to a_k, \quad k \neq i$$

$$K_{ijk}: a_i \to a_i a_j a_k a_j^{-1} a_k^{-1}$$

$$a_m \to a_m, \quad m \neq i$$

where $a_1, a_2, ..., a_n$ are a set of free generators of F_n , and where the subscripts of each of these automorphisms are distinct members of the set $\{1, 2, ..., n\}$. In the present paper, we will study certain interesting subgroups of K, in the case n=3. In this case, K has a minimal set of nine generators, as K_{ijk}^{-1} is easily seen to be K_{ikj} . Some, although not all, of our results can be obtained for n>3 by the same methods.

In section 3, generators and defining relations for the subgroup K_1 of those automorphisms in K which keep two generators of the free group fixed will be presented. In section 4, generators for the subgroup \tilde{K}_3 of those automorphisms in K which leave one generator of the free group fixed will be found. Then, in section 5, the group of those automorphisms 1-692907 Acta mathematica. 123. Imprimé le 9 Septembre 1969.

and