The elementary theory of large *e*-fold ordered fields

by

MOSHE JARDEN

Tel-Aviv University, Tel-Aviv, Israel(1)

Contents

	Introduction				•	239
1.	Ordered fields					
2.	Pseudo real closed fields					242
3.	The elementary equivalence theorem for PRC fields					245
4.	Geyer-fields					248
5.	The elementary equivalence theorem for Geyer fields					249
6.	The existence of Geyer fields					252
	The theory of almost all \mathscr{K}_{σ}					256
8.	The probability of a sentence to be true					257
9.	A decision procedure					257
	References					259

Introduction

The aim of this work is to continue Van den Dries' treatment of the theory of e-fold ordered fields along the lines of the treatment given in Jarden-Kiehne [10] to the theory of e-free Ax fields.

Van den Dries generalizes in his thesis [18] the theory of real closed fields. He considers structures $(K, P_1, ..., P_e)$ that consist of a field K and e orderings $P_1, ..., P_e$ of K. He proves in [18, p. 54]:

The theory of *e*-fold ordered fields OF_e has a model companion \overline{OF}_e , the models of which are the *e*-fold ordered fields (E, P_1, \dots, P_e) satisfying:

(a) P_i and P_j induce different order topologies on E for all $1 \le i \le j \le e$.

(β) If $f \in E[T, X]$ is an irreducible polynomial and if there exists an $a_0 \in E$ such that $f(a_0, X)$ changes sign on E with respect to each of the P_i 's, then there exist $a, b \in E$ such that f(a, b)=0.

In particular it follows from this theorem that the absolute Galois group G(E) of E is a pro-2-group generated by e involutions (cf. [18, p. 77 and p. 92]). If E is algebraic

^{(&}lt;sup>1</sup>) This work was done while the author was visiting the University of California at Irvine. He was also supported in part by a BSF grant.