Disjoint spheres, approximation by imaginary quadratic numbers, and the logarithm law for geodesics

by

DENNIS SULLIVAN

I.H.E.S., Bures-sur-Yvette, France

Contents

§ 0. Introduction	215
§ 1. Abstract Borel-Cantelli	218
§ 2. Disjoint circles and independence	220
§ 3. Khintchine's metric approximation (a new proof)	221
§ 4. Disjoint spheres and Borel Cantelli with respect to Lebesgue	
measure	223
§ 5. Disjoint spheres arising from cusps	224
§ 6. Disjoint spheres and the mixing property of the geodesic flow .	226
§ 7. Disjoint spheres and imaginary quadratic fields	228
§ 8. Disjoint spheres and geodesics excursions	229
§ 9. The logarithm law for geodesics	231
§ 10. Disjoint spheres and the spatial distribution of the canonical geo-	
metrical measure	232
Bibliography	236

§ 0. Introduction

This paper is based on the principle that probabalistic independence of certain sets in Euclidean space is forced by a disjoint collection of spheres in a Euclidean space of one higher dimension. (See Figure 1.)

This principle allows a new proof of (a new variant of) Khintchine's approximation theorem for almost all reals by rationals §3. The new proof extends naturally to the approximation of almost all complex numbers by ratios of integers p/q, p, $q \in \vartheta(\sqrt{-d})$ in imaginary quadratic fields.

Let $0 \le a(x) < 1, x$ a positive real, be any function so that the size of a(x) up to bounded ratio only depends on the size of x up to bounded ratio. The following theorem is proved in § 7.