Analytic capacity and differentiability properties of finely harmonic functions

by
ALEXANDER M. DAVIE and BERNT $\emptyset K S E N D A L$
University of Edinburgh, Scotland
Agder Distriktsh ϕ gskole,
Kristiansand, Norway

1. Introduction

Let f be a finely harmonic function defined on a finely open set V in the complex plane C. In this paper we investigate the problem: To what extent is f differentiable in V ?

There are of course several ways of interpreting the question. Debiard and Gaveau [4], [5] have proved the following: Let $K \subset C$ be compact and let $H(K)$ denote the uniform closure on K of functions harmonic in a neighbourhood of K. Then $H(K)$ coincides with the set of functions continuous on K and finely harmonic on the fine interior K^{\prime} of K. And if $g \in H(K)$ is the uniform limit of functions g_{n} harmonic in a neighbourhood of K, then ∇g_{n} converges in $L^{2}(m)$ to a limit ∇g, which does not depend on the sequence chosen. Here and later m denotes planar Lebesgue measure. In the other direction they give an example of a compact set K and a point $x_{0} \in K^{\prime}$ such that $\left|\nabla g_{n}\left(x_{0}\right)\right| \rightarrow \infty$ as $n \rightarrow \infty$.

It was conjectured by T. J. Lyons (private communication) that $\left\{\nabla g_{n}(x)\right\}$ always converges outside a set of zero logarithmic capacity. In section 3 we prove that this conjecture fails: For any compact set E with zero analytic capacity, there exists a compact set K with $E \subseteq K^{\prime}$ and functions g_{n} harmonic in a neighbourhood of K such that $g_{n} \rightarrow 0$ uniformly on K and $\left|\partial g_{n} / \partial \bar{z}\right| \rightarrow \infty$ uniformly on E (Theorem 1).

In section 4 we show that parts of the proof of Theorem 1 can be used to prove the following estimate for analytic capacity γ (Theorem 2): If E, F are compact sets and $0<\alpha<1$, then

$$
\gamma(E) \leqslant A_{a}\left[\gamma(E \backslash F)+C_{\alpha}(F)^{1 / \alpha}\right],
$$

where C_{α} is the capacity associated to the potential $|z|^{-\alpha}$ and A_{α} is a constant depending only on α. This result in turn implies that any compact set of Hausdorff dimension less than 1 is γ-negligible, i.e. negligible with respect to approximation by bounded analytic functions (Theorem 3).

