Embedding l_{p}^{m} into l_{1}^{n}

by
WILLIAM B. JOHNSON ${ }^{1}$) and GIDEON SCHECHTMAN ${ }^{1}$)
> Ohio State University Columbus, OH, U.S.A.
Texas A\&M University
College Station, TX, U.S.A
Weizmann Institute of Science
Rehovot, Israel
Ohio State University
Columbus, OH, U.S.A.

1. Introduction

It is by now well-known that for any $1<s<2, L_{1}(0,1)$ contains a subspace which is isometrically isomorphic to l_{s}. This of course implies that for any $m=1,2, \ldots$ and any $\varepsilon>0, l_{s}^{m}$ is $1+\varepsilon$-isomorphic to a subspace of l_{1}^{n} if $n=n(\varepsilon, s, m)$ is sufficiently large. Theorem 1, the result of this paper, states that n can be of order m; i.e., that n can be chosen smaller than $\beta^{-1} m$ for some constant $\beta=\beta(\varepsilon, s)>0$. This complements the theorem of Figiel, Lindenstrauss and Milman [4] (cf. also [2], [3] for a somewhat weaker result) which treated the case $s=2$.

Actually the proof of Theorem 1 yields more than the above-mentioned result. First, it shows for $0<s<2$ and $0<r<s$ with $r \leqslant 1$, that for every $\varepsilon>0, l_{s}^{m}$ is $1+\varepsilon$ isomorphic to a subspace of l_{r}^{n} if $m \leqslant \beta n$, where $\beta=\beta(\varepsilon, s, r)>0$ is a constant independent of n. Secondly, the condition that the range of the isomorphism be l_{r}^{n} can be relaxed. What is needed is that the range be an r-normed space which possesses a basis $\left(e_{i}\right)_{i=1}^{n}$ so that for all scalars $\left(b_{i}\right)_{i=1}^{n}$,

$$
\underset{ \pm}{\operatorname{Av}}\left\|\sum_{i=1}^{n} \pm b_{i} e_{i}\right\| \approx\left(\sum_{i=1}^{n}\left|b_{i}\right|^{r}\right)^{1 / r}
$$

The proof of Theorem 1, like the earlier proof of the $s=2$ case in [4], [2], [3], [5] and [11], is probabilistic in nature. A schematic outline of the usual argument specialized to the case $1<s<2$ and $r=1$ goes like this: For appropriate m and n, one defines a probability space (Ω, P) and a random linear operator or matrix $A=A_{\omega}(\omega \in \Omega)$ from l_{s}^{m}

[^0]
[^0]: (${ }^{1}$) Supported in part by NSF MCS-7903042.

