Embedding l_p^m into l_1^n

by

WILLIAM B. JOHNSON(1) and GIDEON SCHECHTMAN(1)

Ohio State University Columbus, OH, U.S.A. Texas A&M University College Station, TX, U.S.A. Weizmann Institute of Science Rehovot, Israel Ohio State University

Columbus, OH, U.S.A.

1. Introduction

It is by now well-known that for any $1 \le s \le 2$, $L_1(0, 1)$ contains a subspace which is isometrically isomorphic to l_s . This of course implies that for any m=1, 2, ... and any $\varepsilon > 0$, l_s^m is $1+\varepsilon$ -isomorphic to a subspace of l_1^n if $n=n(\varepsilon, s, m)$ is sufficiently large. Theorem 1, the result of this paper, states that *n* can be of order *m*; i.e., that *n* can be chosen smaller than $\beta^{-1}m$ for some constant $\beta = \beta(\varepsilon, s) > 0$. This complements the theorem of Figiel, Lindenstrauss and Milman [4] (cf. also [2], [3] for a somewhat weaker result) which treated the case s=2.

Actually the proof of Theorem 1 yields more than the above-mentioned result. First, it shows for 0 < s < 2 and 0 < r < s with $r \le 1$, that for every $\varepsilon > 0$, l_s^m is $1 + \varepsilon$ isomorphic to a subspace of l_r^n if $m \le \beta n$, where $\beta = \beta(\varepsilon, s, r) > 0$ is a constant independent of *n*. Secondly, the condition that the range of the isomorphism be l_r^n can be relaxed. What is needed is that the range be an *r*-normed space which possesses a basis $(e_i)_{i=1}^n$ so that for all scalars $(b_i)_{i=1}^n$,

$$\operatorname{Av}_{\pm} \left\| \sum_{i=1}^{n} \pm b_{i} e_{i} \right\| \approx \left(\sum_{i=1}^{n} |b_{i}|^{r} \right)^{1/r}.$$

The proof of Theorem 1, like the earlier proof of the s=2 case in [4], [2], [3], [5] and [11], is probabilistic in nature. A schematic outline of the usual argument specialized to the case 1 < s < 2 and r=1 goes like this: For appropriate m and n, one defines a probability space (Ω, P) and a random linear operator or matrix $A=A_{\omega}$ ($\omega \in \Omega$) from l_s^m

⁽¹⁾ Supported in part by NSF MCS-7903042.