Isometry groups of simply connected manifolds of nonpositive curvature II

by
PATRICK EBERLEIN $\left({ }^{1}\right)$

University of North Carolina
Chapel Hill, N.C., U.S.A.

Introduction

Let H denote a complete simply connected Riemannian manifold of nonpositive sectional curvature, and let $I(H)$ denote the group of isometries of H. In this paper we consider density properties of subgroups $D \subseteq I(H)$ that satisfy the duality condition (defined below). These density properties also yield characterizations of Riemannian symmetric spaces of noncompact type and results about lattices in H that strengthen several of the results of [11] and [15]. If H is a symmetric space of noncompact type and if D is a subgroup of $I_{0}(H)$, then the duality condition for D is implied by the Selberg property (S) for D [20, pp. 4-6] or [10]. A partial converse is obtained in [10]. It is an interesting question whether the two conditions are equivalent in this context.

Our density results are very similar to those of [5]. In Proposition 4.2 we obtain a differential geometric version of the Borel density theorem (cf. Corollary 4.2 of [5]): Let H admit no Euclidean de Rham factor, and let $G \subseteq I(H)$ be a subgroup whose normalizer D in $I(H)$ satisfies the duality condition. Then either (1) G is discrete or (2) there exist manifolds H_{1}, H_{2} such that (a) H is isometric to the Riemannian product $H_{1} \times H_{2}$, (b) H_{1} is a symmetric space of noncompact type, (c) $(\bar{G})_{0}=I_{0}\left(H_{1}\right)$ and (d) there exists a discrete subgroup $B \subseteq I\left(H_{2}\right)$, whose normalizer in $I\left(H_{2}\right)$ satisfies the duality condition, such that $I_{0}\left(H_{1}\right) \times B$ is a subgroup of \bar{G} of finite index in \bar{G}. Using the result just quoted or the main theorem of section 3 we then obtain the following decomposition of a manifold H whose isometry group $I(H)$ satisfies the duality condition (Proposition 4.1): Let $I(H)$ satisfy the duality condition. Then there exist manifolds H_{0}, H_{1} and H_{2}, two of which may have dimension zero, such that (1) H is isometric to

[^0]
[^0]: (${ }^{1}$) Supported in part by NSF Grant MCS-7901730.

