ARITHMETIC MEANS AND THE TAUBERIAN CONSTANT .474541.

By

RALPH PALMER AGNEW

of Ithaca, New York.

1. Introduction.

Let Σu_{n} be a series of complex terms satisfying the Tauberian condition $\lim \sup \left|n u_{n}\right|<\infty$. Let $s_{n}=u_{0}+u_{1}+\cdots+u_{n}$ denote the sequence of partial sums of Σu_{n}, and let

$$
\begin{equation*}
M_{n}=\frac{s_{0}+s_{1}+\cdots+s_{n}}{n+1}=\sum_{k=0}^{n}\left(1-\frac{k}{n+1}\right) u_{k} \tag{1.1}
\end{equation*}
$$

denote the arithmetic mean transform. The Kronecker formula

$$
\begin{equation*}
M_{n}-s_{n}=\frac{1}{n+1} \sum_{k=0}^{n} k u_{k} \tag{1.2}
\end{equation*}
$$

which follows from (1.1), implies that the formula

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left|M_{n}-s_{p_{n}}\right| \leqq B \lim \sup \left|n u_{n}\right| \tag{1.3}
\end{equation*}
$$

holds when $p_{n}=n$ and $B=1$.
The questions with which we are concerned are the following where in one case we assume that Σu_{n} has bounded partial sums, and in the other case we do not make this assumption. How much can we reduce the constant B in (1.3) if, instead of requiring that $p_{n}=n$, we allow p_{n} to be the optimum sequence that can be selected after the series Σu_{n} has been given? It was shown in [3, Theorem 5.4] that B can be reduced to $\log 2=.69315$, and no further, if we require that p_{n} be a function of n alone so that p_{n} must be independent of the terms of Σu_{n}. Moreover (1.3) holds when $p_{n}=[n / 2]$ and $B=.69315$. It was also shown in [3, Theorem 9.2] that B can be reduced to .56348 by choosing p_{n} to be the most favorable one of the two integers [$3 n / 8$] and [$5 n / 8$], the choice being allowed to depend upon the

