ARITHMETIC MEANS AND THE TAUBERIAN CONSTANT .474541.

Вy

RALPH PALMER AGNEW

of Ithaca, New York.

1. Introduction.

Let Σu_n be a series of complex terms satisfying the Tauberian condition $\limsup |nu_n| < \infty$. Let $s_n = u_0 + u_1 + \cdots + u_n$ denote the sequence of partial sums of Σu_n , and let

(1.1)
$$M_n = \frac{s_0 + s_1 + \cdots + s_n}{n+1} = \sum_{k=0}^n \left(1 - \frac{k}{n+1}\right) u_k$$

denote the arithmetic mean transform. The Kronecker formula

$$M_n - s_n = \frac{1}{n+1} \sum_{k=0}^n k u_k,$$

which follows from (1.1), implies that the formula

(1.3)
$$\limsup_{n\to\infty} |M_n - s_{p_n}| \leq B \lim \sup |nu_n|$$

holds when $p_n = n$ and B = 1.

The questions with which we are concerned are the following where in one case we assume that $\sum u_n$ has bounded partial sums, and in the other case we do not make this assumption. How much can we reduce the constant B in (1.3) if, instead of requiring that $p_n = n$, we allow p_n to be the optimum sequence that can be selected after the series $\sum u_n$ has been given? It was shown in [3, Theorem 5.4] that B can be reduced to $\log 2 = .69315$, and no further, if we require that p_n be a function of n alone so that p_n must be independent of the terms of $\sum u_n$. Moreover (1.3) holds when $p_n = \lfloor n/2 \rfloor$ and B = .69315. It was also shown in [3, Theorem 9.2] that B can be reduced to .56348 by choosing p_n to be the most favorable one of the two integers $\lfloor 3n/8 \rfloor$ and $\lfloor 5n/8 \rfloor$, the choice being allowed to depend upon the