SOME PROPERTIES OF CONTINUED FRACTIONS.

By

L. KUIPERS and B. MEULENBELD

of Banduna (Indonesia).

§ 1. Introduction.

Let
(1)

$$
\left\{a_{1}, a_{2}, \ldots\right\}
$$

be an infinite normal continued fraction, a_{1}, a_{2}, \ldots being integers with $a_{1} \geqq 0$, $a_{k} \geqq 1 \quad(k=2,3, \ldots)$.

The consecutive convergents of (1) are denoted by $\frac{P_{0}}{Q_{0}}, \frac{P_{1}}{Q_{1}}, \frac{P_{2}}{Q_{2}}, \ldots$, where $\frac{P_{0}}{Q_{0}}$ has the usual symbolic sense $\frac{1}{0}$, and where the irreducible fraction $\frac{P_{k}}{Q_{k}}(k \geqq 1)$ has the value of the continued fraction $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$. We have:

$$
\left\{\begin{array}{l}
P_{n}=a_{n} P_{n-1}+P_{n-2}(n \geqq 2), \quad P_{1}=a_{1}, P_{0}=1 \tag{2}\\
Q_{n}=a_{n} Q_{n-1}+Q_{n-2}(n \geqq 2), \quad Q_{1}=1, Q_{0}=0 \\
P_{n} Q_{n-1}-P_{n-1} Q_{n}=(-1)^{n+1}(n \geqq 1)
\end{array}\right.
$$

For $a_{n+1} \geqq 2(n \geqq 1)$ the fractions

$$
\begin{equation*}
\frac{b P_{n}+P_{n-1}}{b Q_{n}+Q_{n-1}} \quad\left(b=1,2, \ldots, a_{n+1}-1\right) \tag{3}
\end{equation*}
$$

are the interpolated fractions of (1). For $b=1$ and $b=a_{n+1}-1$ the fractions (3) are the extreme interpolated fractions between $\frac{P_{n-1}}{Q_{n-1}}$ and $\frac{P_{n+1}}{Q_{n+1}}$. The following theorems are well-known [1]:

1. Is α a positive irrational number, then each convergent $\frac{P}{Q}(Q \geqq 1)$ of $\alpha=$ $=\left\{a_{1}, a_{2}, \ldots\right\}$ satisfies the inequality:

$$
\begin{equation*}
\left|\alpha-\frac{P}{Q}\right|<\frac{1}{Q^{2}} . \tag{4}
\end{equation*}
$$

[^0]
[^0]: 1-632081 Acta mathematica. 87

