SOME PROPERTIES OF CONTINUED FRACTIONS.

By

L. KUIPERS and B. MEULENBELD

of BANDUNG (INDONESIA).

§ 1. Introduction.

 \mathbf{Let}

(1)

$$\{a_1, a_2, \ldots\}$$

be an infinite normal continued fraction, a_1, a_2, \ldots being integers with $a_1 \ge 0$, $a_k \ge 1$ $(k = 2, 3, \ldots)$.

The consecutive convergents of (1) are denoted by $\frac{P_0}{Q_0}$, $\frac{P_1}{Q_1}$, $\frac{P_2}{Q_2}$, ..., where $\frac{P_0}{Q_0}$ has the usual symbolic sense $\frac{1}{0}$, and where the irreducible fraction $\frac{P_k}{Q_k}$ $(k \ge 1)$ has the value of the continued fraction $\{a_1, a_2, \ldots, a_k\}$. We have:

(2)
$$\begin{cases} P_n = a_n P_{n-1} + P_{n-2} \ (n \ge 2), \quad P_1 = a_1, \quad P_0 = 1; \\ Q_n = a_n Q_{n-1} + Q_{n-2} \ (n \ge 2), \quad Q_1 = 1, \quad Q_0 = 0; \\ P_n Q_{n-1} - P_{n-1} Q_n = (-1)^{n+1} \ (n \ge 1). \end{cases}$$

For $a_{n+1} \geq 2$ $(n \geq 1)$ the fractions

(3)
$$\frac{b P_n + P_{n-1}}{b Q_n + Q_{n-1}} \quad (b = 1, 2, ..., a_{n+1} - 1)$$

are the interpolated fractions of (1). For b = 1 and $b = a_{n+1} - 1$ the fractions (3) are the extreme interpolated fractions between $\frac{P_{n-1}}{Q_{n-1}}$ and $\frac{P_{n+1}}{Q_{n+1}}$. The following theorems are well-known [1]:

1. Is a a positive irrational number, then each convergent $\frac{P}{Q}$ $(Q \ge 1)$ of $\alpha = \{a_1, a_2, \ldots\}$ satisfies the inequality:

(4)
$$\left|\alpha - \frac{P}{Q}\right| < \frac{1}{Q^2}$$

1 – 632081 Acta mathematica. 87