HOW A MINIMAL SURFACE LEAVES AN OBSTACLE

BY
DAVID KINDERLEHRER
University of Minnesota, Minneapolis, MN 55455, USA (${ }^{1}$)

This paper is an investigation of the curve of separation determined by the solution to a variational inequality for minimal surfaces. A strictly convex domain Ω in the $z=$ $x_{1}+i x_{2}$ plane is given together with a smooth function ψ which assumes a positive maximum in Ω and is negative on $\partial \Omega$, the boundary of Ω. Let u denote the Lipschitz function which minimizes area among all Lipschitz functions in Ω constrained to lie above ψ in Ω and to vanish on $\partial \Omega$. For such u there is a coincidence set $I \subset \Omega$ consisting of those points z where $u(z)=\psi(z)$. Let us call $\Gamma=\left\{\left(x_{1}, x_{2}, x_{3}\right): x_{3}=u(z)=\psi(z), z \in \partial I\right\}$ the "curve" of separation. The object of this paper is to show that Γ is analytic, as a function of its arc length parameter, provided that ψ is strictly concave and analytic.

The study of the coincidence set of the solution to a variational inequality and its curve of separation was originated, together with the study of the regularity of the solution, by H. Lewy and G. Stampacchia ([11)]. They obtained, essentially, the result presented here for the variational inequality derived from the Dirichlet Integral. The topological conclusion that Γ is a Jordan curve was reached under the assumption that $\psi \in C^{2}(\bar{\Omega})$ be strictly concave, a conclusion valid for a wide variety of cases, in particular the problem treated in this paper ([6]).

Our demonstration relies on the resolution of a system of differential equations and the utilization of the solution to extend analytically a conformal representation of the minimal surface which is the graph of u in the subset of Ω where $u(z)>\psi(z)$. The idea of connecting an analytic function to its possible extension by means of the solution to a differential equation is due to Hans Lewy and was used by him to study the behavior of minimal surfaces with prescribed and with free boundaries ([9], [10]).
The problem at hand is distinguished from more well known problems in the calculus of variations because it has only a single boundary relation, impeding both the derivation

[^0]
[^0]: ${ }^{(1)}$ This research was partially supported by contract AFOSR 71-2098 and a Borsa di Studio del C.N.R. (1971-1972).

