HOW A MINIMAL SURFACE LEAVES AN OBSTACLE

BY

DAVID KINDERLEHRER

University of Minnesota, Minneapolis, MN 55455, USA (1)

This paper is an investigation of the curve of separation determined by the solution to a variational inequality for minimal surfaces. A strictly convex domain Ω in the $z = x_1 + ix_2$ plane is given together with a smooth function ψ which assumes a positive maximum in Ω and is negative on $\partial\Omega$, the boundary of Ω . Let u denote the Lipschitz function which minimizes area among all Lipschitz functions in Ω constrained to lie above ψ in Ω and to vanish on $\partial\Omega$. For such u there is a coincidence set $I \subset \Omega$ consisting of those points z where $u(z) = \psi(z)$. Let us call $\Gamma = \{(x_1, x_2, x_3): x_3 = u(z) = \psi(z), z \in \partial I\}$ the "curve" of separation. The object of this paper is to show that Γ is analytic, as a function of its arc length parameter, provided that ψ is strictly concave and analytic.

The study of the coincidence set of the solution to a variational inequality and its curve of separation was originated, together with the study of the regularity of the solution, by H. Lewy and G. Stampacchia ([11]]. They obtained, essentially, the result presented here for the variational inequality derived from the Dirichlet Integral. The topological conclusion that Γ is a Jordan curve was reached under the assumption that $\psi \in C^2(\overline{\Omega})$ be strictly concave, a conclusion valid for a wide variety of cases, in particular the problem treated in this paper ([6]).

Our demonstration relies on the resolution of a system of differential equations and the utilization of the solution to extend analytically a conformal representation of the minimal surface which is the graph of u in the subset of Ω where $u(z) > \psi(z)$. The idea of connecting an analytic function to its possible extension by means of the solution to a differential equation is due to Hans Lewy and was used by him to study the behavior of minimal surfaces with prescribed and with free boundaries ([9], [10]).

The problem at hand is distinguished from more well known problems in the calculus of variations because it has only a single boundary relation, impeding both the derivation

^{(&}lt;sup>1</sup>) This research was partially supported by contract AFOSR 71-2098 and a Borsa di Studio del C.N.R. (1971-1972).