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§ 1. Introduction

Let g be a Lie algebra over R, the field of real numbers, and g, a g-module in a Hilbert

space H. If the domain of ¢ is dense, one can define an adjoint module o' in H such that
ala)f, 9) = (f, a*(a")g)

for all 1€ D(o), g€ D(s*), a€ Ulg], (see Appendix A for notation and details). The module
o is said to be symmetric or (infinitesimally) unitary if c<¢' and self-adjoint if o=0".
The importance of self-adjointness comes from the fact that d7 is a self-adjoint module
{see Appendix A). Here 7T is a unitary representation of the simply connected group
corresponding to g, and d7 is the usual g-module with the set of C®-vectors of T' as its
domain. Calling a g-module exact if it is equal to d7 for some 7', a natural problem would
be to determine all exact extensions of a given symmetric g-module. The theory here is
analogous to the theory of self-adjoint extensions of a single unbounded symmetric
operator. In fact if dim g=1, it is well known that g-module is exact if and only if it is
self-adjoint. For the general case, self-adjointness is necessary but not sufficient for exact-
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