UNITARY REPRESENTATIONS DEFINED BY BOUNDARY CONDITIONS—THE CASE OF $\mathfrak{sl}(2, R)$

BY

R. RANGA RAO(1)

University of Illinois, Urbana, Ill., U.S.A

1.	Introduction																			185
2.	Preliminaries on \mathfrak{gl}_2																			186
	The homomorphism ϱ_{λ} .																			
4.	Eigenfunctions of $\varrho_{\lambda}(H')$																			189
	Boundary forms																			
6.	Boundary values																			191
7.	Self-adjoint extensions .																			195
8.	Bases of eigenfunctions—	the	d	isc	ret	te	seı	ie	3											201
9.	The representations $T_{\lambda,\delta}$.	λ,																		205
Appendix A. On extensions of symmetric g-modules .																				

§ 1. Introduction

Let \mathfrak{g} be a Lie algebra over R, the field of real numbers, and σ , a \mathfrak{g} -module in a Hilbert space \mathcal{H} . If the domain of σ is dense, one can define an adjoint module σ^{\dagger} in \mathcal{H} such that

$$(\sigma(a)f,g)=(f,\sigma^{\dagger}(a^{\dagger})g)$$

for all $f \in \mathcal{D}(\sigma)$, $g \in \mathcal{D}(\sigma^{\dagger})$, $a \in \mathcal{U}[\mathfrak{g}]$, (see Appendix A for notation and details). The module σ is said to be symmetric or (infinitesimally) unitary if $\sigma \subset \sigma^{\dagger}$ and self-adjoint if $\sigma = \sigma^{\dagger}$. The importance of self-adjointness comes from the fact that dT is a self-adjoint module (see Appendix A). Here T is a unitary representation of the simply connected group corresponding to \mathfrak{g} , and dT is the usual \mathfrak{g} -module with the set of C^{∞} -vectors of T as its domain. Calling a \mathfrak{g} -module exact if it is equal to dT for some T, a natural problem would be to determine all exact extensions of a given symmetric \mathfrak{g} -module. The theory here is analogous to the theory of self-adjoint extensions of a single unbounded symmetric operator. In fact if dim $\mathfrak{g}=1$, it is well known that \mathfrak{g} -module is exact if and only if it is self-adjoint. For the general case, self-adjointness is necessary but not sufficient for exact-

⁽¹⁾ Partially supported by NSF grant MCS 76-06981.