UNITARY REPRESENTATIONS DEFINED BY BOUNDARY CONDITIONS—THE CASE OF $\mathfrak{sl}(2, R)$ BY ## R. RANGA RAO(1) University of Illinois, Urbana, Ill., U.S.A | 1. | Introduction | | | | | | | | | | | | | | | | | | | 185 | |--|--|-----|---|-----|-----|----|-----|----|---|--|--|--|--|--|--|--|--|--|--|-----| | 2. | Preliminaries on \mathfrak{gl}_2 | | | | | | | | | | | | | | | | | | | 186 | | | The homomorphism ϱ_{λ} . | 4. | Eigenfunctions of $\varrho_{\lambda}(H')$ | | | | | | | | | | | | | | | | | | | 189 | | | Boundary forms | 6. | Boundary values | | | | | | | | | | | | | | | | | | | 191 | | 7. | Self-adjoint extensions . | | | | | | | | | | | | | | | | | | | 195 | | 8. | Bases of eigenfunctions— | the | d | isc | ret | te | seı | ie | 3 | | | | | | | | | | | 201 | | 9. | The representations $T_{\lambda,\delta}$. | λ, | | | | | | | | | | | | | | | | | | 205 | | Appendix A. On extensions of symmetric g-modules . | ## § 1. Introduction Let \mathfrak{g} be a Lie algebra over R, the field of real numbers, and σ , a \mathfrak{g} -module in a Hilbert space \mathcal{H} . If the domain of σ is dense, one can define an adjoint module σ^{\dagger} in \mathcal{H} such that $$(\sigma(a)f,g)=(f,\sigma^{\dagger}(a^{\dagger})g)$$ for all $f \in \mathcal{D}(\sigma)$, $g \in \mathcal{D}(\sigma^{\dagger})$, $a \in \mathcal{U}[\mathfrak{g}]$, (see Appendix A for notation and details). The module σ is said to be symmetric or (infinitesimally) unitary if $\sigma \subset \sigma^{\dagger}$ and self-adjoint if $\sigma = \sigma^{\dagger}$. The importance of self-adjointness comes from the fact that dT is a self-adjoint module (see Appendix A). Here T is a unitary representation of the simply connected group corresponding to \mathfrak{g} , and dT is the usual \mathfrak{g} -module with the set of C^{∞} -vectors of T as its domain. Calling a \mathfrak{g} -module exact if it is equal to dT for some T, a natural problem would be to determine all exact extensions of a given symmetric \mathfrak{g} -module. The theory here is analogous to the theory of self-adjoint extensions of a single unbounded symmetric operator. In fact if dim $\mathfrak{g}=1$, it is well known that \mathfrak{g} -module is exact if and only if it is self-adjoint. For the general case, self-adjointness is necessary but not sufficient for exact- ⁽¹⁾ Partially supported by NSF grant MCS 76-06981.