EXTREMAL AND CONJUGATE EXTREMAL DISTANCE ON OPEN RIEMANN SURFACES WITH APPLICATIONS TO CIRCULAR-RADIAL SLIT MAPPINGS

BY

A. MARDEN and B. RODIN

University of Minnesota, Minneapolis and University of California, San Diego(1)

Partition the boundary of a compact bordered Riemann surface \overline{W} into four disjoint sets α_0 , α , β , γ with α_0 and α non-empty. Let \hat{W} denote the compactification of W obtained by adding to W a point for each boundary component. Define

 $F = \{c : c \text{ is an arc in } \widehat{W} - \gamma \text{ from } \alpha_0 \text{ to } \alpha\}$

and $F^* = \{c : c \text{ is a sum of closed curves in } \widehat{W} - \beta \text{ such that } c \text{ separates } \alpha_0 \text{ from } \alpha\}.$

Determine the harmonic function u in W by the boundary conditions u=0 on α_0 , u=1on α , $\partial u/\partial n=0$ along γ and u is constant on each component β_i in β such that $\int_{\beta_i} du^* = 0$. Then $\lambda(F) = ||du||^{-2}$, $\lambda(F^*) = ||du||^2$ (see Lemma III.1.1) where $\lambda(\cdot)$ denotes the extremal length and $||du||^2$ the Dirichlet integral. This result was essentially known to Ahlfors and Beurling by the time of their fundamental paper on conformal invariants [1]. We observe that if W is planar and α_0 , α are each single boundary components, $\exp 2\pi(u+iu^*)/||du||^2$ is a conformal mapping of W into $1 < |z| < \exp 2\pi/||du||^2$ and the images of the components in β are circular slits and the images of the components in γ radial slits.

The purpose of this paper is to give a complete generalization of the above result to arbitrary open Riemann surfaces. As a consequence of our work we obtain a new class of conformal mappings of plane regions onto "extremal" slit annuli analogous to the situation described above.

We begin with an open Riemann surface W and partition its ideal boundary into four disjoint sets α_0 , α , β , γ with α_0 and α non-empty and α_0 , α and $\alpha_0 \cup \alpha \cup \beta$ closed in the Kerékjárto-Stoilöw compactification \widehat{W} of W. Classes of curves \mathcal{J} , \mathcal{J}^* analogous to F and F^*

^{(&}lt;sup>1</sup>) This work was supported in part by the National Science Foundation under grants GP 2280 at the University of Minnesota and GP 4106 at the University of California, San Diego.