EXTREMAL AND CONJUGATE EXTREMAL DISTANCE ON OPEN RIEMANN SURFACES WITH APPLICATIONS TO CIRCULAR-RADIAL SLIT MAPPINGS

BY

A. MARDEN and B. RODIN
University of Minnesota, Minneapolis and University of California, San Diego(${ }^{1}$)

Partition the boundary of a compact bordered Riemann surface \bar{W} into four disjoint sets $\alpha_{0}, \alpha, \beta, \gamma$ with α_{0} and α non-empty. Let \hat{W} denote the compactification of W obtained by adding to W a point for each boundary component. Define

$$
F=\left\{c: c \text { is an arc in } \hat{W}-\gamma \text { from } \alpha_{0} \text { to } \alpha\right\}
$$

and $\quad F^{*}=\left\{c: c\right.$ is a sum of closed curves in $\hat{W}-\beta$ such that c separates α_{0} from $\left.\alpha\right\}$.
Determine the harmonic function u in W by the boundary conditions $u=0$ on $\alpha_{0}, u=1$ on $\alpha, \partial u / \partial n=0$ along γ and u is constant on each component β_{i} in β such that $\int_{\beta_{i}} d u^{*}=0$. Then $\lambda(F)=\|d u\|^{-2}, \lambda\left(F^{*}\right)=\|d u\|^{2}$ (see Lemma III.1.1) where $\lambda(\cdot)$ denotes the extremal length and $\|d u\|^{2}$ the Dirichlet integral. This result was essentially known to Ahlfors and Beurling by the time of their fundamental paper on conformal invariants [1]. We observe that if W is planar and α_{0}, α are each single boundary components, $\exp 2 \pi\left(u+i u^{*}\right) /\|d u\|^{2}$ is a conformal mapping of W into $1<|z|<\exp 2 \pi /\|d u\|^{2}$ and the images of the components in β are circular slits and the images of the components in γ radial slits.

The purpose of this paper is to give a complete generalization of the above result to arbitrary open Riemann surfaces. As a consequence of our work we obtain a new class of conformal mappings of plane regions onto "extremal" slit annuli analogous to the situation described above.

We begin with an open Riemann surface W and partition its ideal boundary into four disjoint sets $\alpha_{0}, \alpha, \beta, \gamma$ with α_{0} and α non-empty and α_{0}, α and $\alpha_{0} \cup \alpha \cup \beta$ closed in the Kerék-járto-Stoilöw compactification \widehat{W} of W. Classes of curves $\mathcal{F}, \mathfrak{F}^{*}$ analogous to F and F^{*}
${ }^{(1)}$ This work was supported in part by the National Science Foundation under grants GP 2280 at the University of Minnesota and GP 4106 at the University of California, San Diego.

