UNIFORM APPROXIMATION ON SMOOTH CURVES

BY

GABRIEL STOLZENBERG

Brown University, Providence, R. I., U.S.A. (1)

Let $K_1, ..., K_n$ be compact subsets of complex N-space C^N , each the locus of a smooth (continuously differentiable) curve. Let $K = K_1 \cup ... \cup K_n$.

For any compact set Y in C^{N} define its polynomial convex hull \hat{Y} as

 $\{p \in C^{N}: |f(p)| \leq \max_{v} |f| \text{ for all polynomials } f\},$

and say that Y is polynomially convex whenever $Y = \hat{Y}$. Let X be a polynomially convex set in C^{N} .

THEOREM.

A. $\overline{K \cup X} - (K \cup X)$ is a (possibly empty) one-dimensional analytic subset of $C^N - (K \cup X)$.

B. Every continuous function on $K \cup X$ which is uniformly approximable on X by polynomials is uniformly approximable on $K \cup X$ by rational functions.

C. If K is simply-connected and disjoint from X or, more generally, if the map $\check{H}^{1}(K \cup X; Z) \rightarrow \check{H}^{1}(X; Z)$ induced by $X \subset K \cup X$ is injective then $K \cup X$ is polynomially convex.

Comments (Technical)

1. N may be infinite, but n is finite.

2. A closed subset V of an open subset U of C^N is a one-dimensional analytic subset of U if and only if a neighborhood of each point in V can be covered by finitely many sets of the form $\Phi(\Delta)$ where Δ is an open disk in the plane and each $\Phi: \Delta \to V$ is a non-constant analytic mapping, i.e., for each complex coordinate z_j on C^N , $z_j \circ \Phi$ is analytic on Δ .

3. \hat{Y} is the spectrum of the algebra of all uniform limits of polynomials on Y [18].

4. In part B, if $K \cup X$ is polynomially convex then the rational functions may be taken to be polynomials [18].

⁽¹⁾ This work was supported in part by N.S.F. grant GU-976.