THE EULER CLASS OF GENERALIZED VECTOR BUNDLES

BY

J. WOLFGANG SMITH

Oregon State University, Corvallis, Ore., U.S.A.(*)

1. Introduction

Let $\xi = (B, X, \pi)$ denote an oriented vector bundle⁽¹⁾ of dimension n, X being its base space, B its total space and $\pi: B \to X$ the projection. The obstruction to nonzero crosssections $s: X \to B$ is a distinguished element χ in $H^n(X)$, the *n*-dimensional singular integral cohomology of X, known as the Euler class of ξ . We begin by briefly recollecting how χ may be defined. Let K denote the singular simplicial complex of X, K^* the singular simplicial complex of B, and K^0 the subcomplex of K^* whose (n-1)-skeleton lies in B, the nonzero part of B. One now defines an integral cocycle ε on K^0 in the following manner:(²) Let Δ_n denote the standard *n*-simplex, $\dot{\Delta}_n$ its boundary, and let $\sigma: \Delta_n \to B$ be a singular *n*-simplex in K^0 . Then $\pi \circ \sigma: \Delta_n \to X$ induces a bundle $\xi' = (B', \Delta_n, \pi')$ over Δ_n , and one may conclude⁽³⁾ from the fact that Δ_n is contractible that ξ' is equivalent to a product bundle. Consequently there exists a second projection $p: B' \to V_n$, where V_n denotes a standard oriented *n*-dimensional vector space. Moreover, the map $\sigma: X \rightarrow B$ induces a cross-section $s:\Delta_n \to B'$, and since σ maps $\dot{\Delta}_n$ to \dot{B} , $p \circ s$ maps $\dot{\Delta}_n$ to \dot{V}_n , the punctured vector space. Since $\dot{\Delta}_n$ and V_n are homotopically equivalent to the oriented (n-1)-sphere, the restriction $p \circ s | \dot{\Delta}_n$ has a well-defined degree.⁽⁴⁾ It is easy to verify that this integer does not depend on the choice of p, and consequently the formula

$$\varepsilon(\sigma) = \operatorname{degree}\left(p \circ s \,\middle|\, \dot{\Delta}_n\right) \tag{1.1}$$

^(*) This research was supported in part by the National Science Foundation under NSF G-23722.

 ⁽¹⁾ For basic facts regarding vector bundles and characteristic classes we refer to J. Milnor [10].
(2) For basic facts regarding singular homology we refer to Eilenberg and Steenrod [7].

^{(&}lt;sup>3</sup>) Steenrod [12], Theorem 11.6.

⁽⁴⁾ Cf. Eilenberg and Steenrod [7], p. 304.