THE EULER CLASS OF GENERALIZED VECTOR BUNDLES

BY
J. WOLFGANG SMITH
Oregon State University, Corvallis, Ore., U.S.A.(*)

1. Introduction

Let $\xi=(B, X, \pi)$ denote an oriented vector bundle $\left(^{1}\right)$ of dimension n, X being its base space, B its total space and $\pi: B \rightarrow X$ the projection. The obstruction to nonzero crosssections $s: X \rightarrow B$ is a distinguished element χ in $H^{n}(X)$, the n-dimensional singular integral cohomology of X, known as the Euler class of ξ. We begin by briefly recollecting how χ may be defined. Let K denote the singular simplicial complex of X, K^{*} the singular simplicial complex of B, and K^{0} the subcomplex of K^{*} whose ($n-1$)-skeleton lies in \dot{B}, the nonzero part of B. One now defines an integral cocycle ε on K^{0} in the following manner:(${ }^{2}$) Let Δ_{n} denote the standard n-simplex, Δ_{n} its boundary, and let $\sigma: \Delta_{n} \rightarrow B$ be a singular n-simplex in K^{0}. Then $\pi \circ \sigma: \Delta_{n} \rightarrow X$ induces a bundle $\xi^{\prime}=\left(B^{\prime}, \Delta_{n}, \pi^{\prime}\right)$ over Δ_{n}, and one may conclude ${ }^{3}$) from the fact that Δ_{n} is contractible that ξ^{\prime} is equivalent to a product bundle. Consequently there exists a second projection $p: B^{\prime} \rightarrow V_{n}$, where V_{n} denotes a standard oriented n-dimensional vector space. Moreover, the map $\sigma: X \rightarrow B$ induces a cross-section $s: \Delta_{n} \rightarrow B^{\prime}$, and since σ maps $\dot{\Delta}_{n}$ to \dot{B}, pos maps $\dot{\Delta}_{n}$ to \dot{V}_{n}, the punctured vector space. Since Δ_{n} and \dot{V}_{n} are homotopically equivalent to the oriented ($n-1$)-sphere, the restriction $p \circ s \mid \Delta_{n}$ has a well-defined degree.(${ }^{4}$) It is easy to verify that this integer does not depend on the choice of p, and consequently the formula

$$
\begin{equation*}
\varepsilon(\sigma)=\operatorname{degree}\left(p \circ s \mid \Delta_{n}\right) \tag{1.1}
\end{equation*}
$$

(*) This research was supported in part by the National Science Foundation under NSF G-23722.
${ }^{(1)}$ For basic facts regarding vector bundles and characteristic classes we refer to J. Milnor [10].
$\left(^{(2)}\right.$ For basic facts regarding singular homology we refer to Eilenberg and Steenrod [7].
${ }^{(3)}$ Steenrod [12], Theorem 11.6.
${ }^{(4)}$ Cf. Eilenberg and Steenrod [7], p. 304.

