A non-standard ideal of a radical Banach algebra of power series

by

MARC P. THOMAS

California State College, Bakersfield, CA, USA

1. Introduction

We will be concerned here with certain radical Banach algebras of power series. Let C[[z]] be the algebra of formal power series over the complex field C. We say that a sequence of positive reals $\{w(n)\}$ is a radical algebra weight provided the following hold:

$$w(0) = 1$$
 and $0 < w(n) \le 1$ for all $n \in \mathbb{Z}^+$; (1.1)

$$w(m+n) \le w(m) w(n) \text{ for all } m, n \in \mathbb{Z}^+; \tag{1.2}$$

$$\lim_{n \to \infty} w(n)^{1/n} = 0.$$
 (1.3)

If these conditions hold, it is routine to check that

$$l^{1}(w(n)) = \left\{ y = \sum_{n=0}^{\infty} y(n) z^{n} \colon \sum_{n=0}^{\infty} |y(n)| w(n) < \infty \right\}$$

is both a subalgebra of C[[z]] and a radical Banach algebra with identity adjoined. Conditions (1.1) and (1.2) make $l^1(w(n))$ into a Banach algebra; Condition (1.3) is needed to give it exactly one maximal ideal. The norm is defined in the natural way: $||y|| = \sum_{n=0}^{\infty} |y(n)| w(n)$. We shall generally refer to $l^1(w(n))$ as a radical Banach algebra. The multiplication is given by the usual multiplication of formal power series. The reader is referred to [3], [4], and [8] for background material on such algebras. Besides $l^1(w(n))$, there are obvious closed ideals in $l^1(w(n))$:

$$M(n) = \left\{ \sum_{k=0}^{\infty} y(k) \, z^k \in l^1(w(n)) \colon y(0) = y(1) = \dots = y(n-1) = 0 \right\}$$
(1.4)