ON SYSTEMS OF IMPRIMITIVITY ON LOCALLY COMPACT ABELIAN GROUPS WITH DENSE ACTIONS

BY

S. C. BAGCHI,(1) JOSEPH MATHEW and M. G. NADKARNI(2)

Indian Statistical Institute, Calcutta, India

1. Introduction

Let Γ be a countable dense subgroup of the group R of real numbers with usual topology. Give Γ the discrete topology and let $B = \hat{\Gamma}$ be its compact dual. For each $t \in R$, the function $\exp(it\lambda)$, $\lambda \in \Gamma$, is a character on Γ , which we denote by e_t . Then the map, $\varphi: t \rightarrow e_t$, is a continuous isomorphism of R into B and $\varphi(R)$ is dense in B. We assume that $2\pi \in \Gamma$. Let K denote the annihilator of the subgroup Γ_0 generated by 2π . The group $N = K \cap \varphi(R)$ consists of elements $\{e_n\}$, $n = 0, \pm 1, \pm 2, ...$ and it is dense in K. In [3] Gamelin showed that every (N, K) cocycle gives rise, in a natural way, to an (R, B) cocycle, and that in any cohomology class of (R, B) cocycles there is a cocycle obtained from an (N, K)cocycle by his procedure. Gamelin considered only scalar cocycles. As a consequence of this work he was able to resolve some of the problems raised by Helson in [5 (1965)] on compact groups with ordered duals.

If a subgroup G_0 of a locally compact group G acts on G through translation, then by (G_0, G) system of imprimitivity we mean a system of imprimitivity for G_0 based on G, acting in some separable Hilbert space \mathcal{H} . In this paper we show that each (N, K) system of imprimitivity (V, E) gives rise to an (R, B) system of imprimitivity (\vec{V}, \vec{E}) . If U denotes the unitary group (indexed by $\hat{K} = \Gamma/\Gamma_0$) associated with E, and F denotes the spectral measure of V (defined on Borel subsets of T, the circle group), then (U, F) is a (\hat{K}, T) system of imprimitivity. We show that (U, F) gives rise in a natural way to a (Γ, R) system of imprimitivity (\tilde{U}, \tilde{F}) , and that every (Γ, R) system of imprimitivity is equivalent to a system of imprimitivity (\tilde{U}, \tilde{F}) . Finally if \tilde{U} denotes the unitary group indexed by Γ with spectral measure \tilde{E} and \tilde{F} the spectral measure of \tilde{V} , then (\tilde{U}, \tilde{F}) and (\tilde{U}, \tilde{F}) are equivalent systems of imprimitivity. We thus complete the circle of ideas involved in Gamelin's work.

⁽¹⁾ Presently at Tata Institute of Fundemental Research, Bombay, India.

^{(&}lt;sup>2</sup>) Presently at University of California, La Jolla, U. S. A.