ON THE EXISTENCE OF CERTAIN SINGULAR INTEGRALS.

By

A. P. CALDERON and A. ZYGMUND

Dedicated to Professor MARCEL RIESZ, on the occasion of his 65th birthday

Introduction.

Let f(x) and K(x) be two functions integrable over the interval $(-\infty, +\infty)$. It is very well known that their composition

$$\int_{-\infty}^{+\infty} f(t) K(x-t) dt$$

exists, as an absolutely convergent integral, for almost every x. The integral can, however, exist almost everywhere even if K is not absolutely integrable. The most interesting special case is that of K(x) = 1/x. Let us set

$$\tilde{f}(x) = \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{f(t)}{x-t} dt.$$

The function \tilde{f} is called the conjugate of f (or the Hilbert transform of f). It exists for almost every value of x in the Principal Value sense:

$$\tilde{f}(x) = \lim_{\epsilon \to 0} \frac{1}{\pi} \left(\int_{-\infty}^{x-\epsilon} + \int_{x+\epsilon}^{\infty} \right) \frac{f(t)}{x-t} \, dt.$$

Moreover it is known (See [9] or [7], p. 317) to satisfy the M. Riesz inequality

(1)
$$\left[\int_{-\infty}^{+\infty} |\tilde{f}|^p \, dx \right]^{1/p} \leq A_p \left[\int_{-\infty}^{+\infty} |f|^p \, dx \right]^{1/p}, \qquad 1$$

where A_p depends on p only. There are substitute result for p = 1 and $p = \infty$. The limit \tilde{f} exists almost everywhere also in the case when f(t) dt is replaced there by dF(t), where F(t) is any function of bounded variation over the whole interval $(-\infty, +\infty)$. (For all this, see e.g. [7], Chapters VII and XI, where also bibliographical references can be found).