ON THE EXISTENCE OF CERTAIN SINGULAR INTEGRALS.

By

A. P. CALDERON and A. ZYGMUND
Dedicated to Professor Marcel Riesz, on the occasion of his 65 th birthday

Introduction.

Let $f(x)$ and $K(x)$ be two functions integrable over the interval $(-\infty,+\infty)$. It is very well known that their composition

$$
\int_{-\infty}^{+\infty} f(t) K(x-t) d t
$$

exists, as an absolutely convergent integral, for almost every x. The integral can, however, exist almost everywhere even if K is not absolutely integrable. The most interesting special case is that of $K(x)=1 / x$. Let us set

$$
\tilde{f}(x)=\frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{f(t)}{x-t} d t
$$

The function \tilde{f} is called the conjugate of f (or the Hilbert transform of f). It exists for almost every value of x in the Principal Value sense:

$$
\tilde{f}(x)=\lim _{\varepsilon \rightarrow 0} \frac{1}{\pi}\left(\int_{-\infty}^{x-\varepsilon}+\int_{x+\varepsilon}^{\infty}\right) \frac{f(t)}{x-t} d t .
$$

Moreover it is known (See [9] or [7], p. 317) to satisfy the M. Riesz inequality

$$
\begin{equation*}
\left[\int_{-\infty}^{+\infty}|\tilde{f}|^{p} d x\right]^{1 / p} \leq A_{p}\left[\int_{-\infty}^{+\infty}|f|^{p} d x\right]^{1 / p}, \quad 1<p<\infty \tag{1}
\end{equation*}
$$

where A_{p} depends on p only. There are substitute result for $p=1$ and $p=\infty$. The limit \tilde{f} exists almost everywhere also in the case when $f(t) d t$ is replaced there by $d F(t)$, where $F(t)$ is any function of bounded variation over the whole interval $(-\infty,+\infty)$. (For all this, see e.g. [7], Chapters VII and XI, where also bibliographical references can be found).

