THE CONGRUENCE $a x^{3}+b y^{3}+c \equiv 0(\bmod x y)$, AND INTEGER solutions of cubic equations in three variables.

By

L. J. MORDELL

Cambridge, England.

I have recently ${ }^{1}$ proposed the following
Conjecture: Let $f(x, y, z)$ be a cubic polynomial in x, y, z with integer coefficients such that $f(x, y, z)$ - a is irreducible for all a. Then if the equation

$$
\begin{equation*}
f(x, y, z)=0 \tag{1}
\end{equation*}
$$

does not represent a cone in three dimensional space and has one solution in integers, there exists an infinity of integer solutions.

This conjecture, as far as I know, has not been proved for even simple equations such as

$$
x^{3}+y^{3}+z^{3}=3,
$$

but was proved for some equations and in particular for

$$
z^{2}-k^{2}=l x+m y+A x^{3}+B x^{2} y+C x y^{2}+D y^{3},
$$

where the coefficients are integers and l is prime to m, the known solution being $x=0, y=0, z=k$. The case $l=m=0$ seems more difficult, but interesting results can be found for some 'equations of the form

$$
\begin{equation*}
z^{2}-k^{2}=A x^{3}+B y^{3} . \tag{2}
\end{equation*}
$$

I find that integer solutions of (2) can be deduced from the integer solutions of some very simple equations included in (1), namely,

$$
\begin{equation*}
a x^{3}+b y^{3}+c=x y z \tag{3}
\end{equation*}
$$

[^0]
[^0]: 1"On cubic equations $z^{2}=f(x, y)$ with an infinity of integer solutions" Proceedings of the American Mathematical Society 3 (1952), 210-217.

