ON THE TRACE FORMULA FOR HECKE OPERATORS

$\mathbf{B}\mathbf{Y}$

GORO SHIMURA

Princeton University, Princeton, N.J. 08540, USA

The formula to be proved in this paper has roughly the following form:

tr
$$(\Gamma \alpha \Gamma | A_m)$$
 - tr $(\Gamma \alpha^{-1} \Gamma | B_{2-m}) = \sum_C J(C)$.

Here Γ is a discrete subgroup of $SL_2(\mathbf{R})$ such that $SL_2(\mathbf{R})/\Gamma$ is of finite measure, m an arbitrary rational number, A_m the space of cusp forms of weight m with respect to Γ on the upper half complex plane \mathfrak{H} , B_{2-m} the space of integral forms of weight 2-mwith respect to Γ , α an element of $SL_2(\mathbf{R})$ such that Γ and $\alpha^{-1}\Gamma\alpha$ are commensurable, and J(C) a complex number defined for each class C of elements of $\Gamma\alpha\Gamma$ under a certain equivalence. The double cosets $\Gamma\alpha\Gamma$ and $\Gamma\alpha^{-1}\Gamma$ act on A_m and B_{2-m} respectively, under some conditions. An *integral form* of weight m is a holomorphic function f(z) on \mathfrak{H} which satisfies $f(\gamma(z))/f(z) = t(\gamma) (d\gamma(z)/dz)^{-m/2}$ for every $\gamma \in \Gamma$ with a certain constant factor $t(\gamma)$, and which is holomorphic at every cusp; an integral form is called a *cusp form* if it vanishes at every cusp.

If *m* is an integer>2, then $B_{2-m} = \{0\}$. The formula in this case was obtained by Selberg [5] and Eichler [2]. If m=2, B_{2-m} consists of the constants, and therefore tr $(\Gamma \alpha^{-1} \Gamma | B_{2-m})$ is simply the number of right or left cosets in $\Gamma \alpha^{-1} \Gamma$. This case is also included in [2]. It should also be mentioned that the generalized Riemann-Roch theorem of Weil [8] is closely related to the above formula when α belongs to the normalizer of Γ .

Although our formula is given for an arbitrary rational m, the cases of integral and half integral weight with respect to an arithmetic Γ seem most significant. If m is a half integer >2, we have again $B_{2-m} = \{0\}$, and the formula is of the same nature as in the case of integral m>2. However, if m=3/2, both A_m and B_{2-m} can be non-trivial. Especially if Γ is a congruence subgroup of $SL_2(\mathbb{Z})$, it is conjecturable that B_1 is spanned by theta series of the type

 $\Sigma_n \psi(n) \exp(2\pi i n^2 r z)$