ON THE TRACE FORMULA FOR HECKE OPERATORS

BY
\section*{GORO SHIMURA}
Princeton University, Princeton, N.J. 08540, USA

The formula to be proved in this paper has roughly the following form:

$$
\operatorname{tr}\left(\Gamma \alpha \Gamma \mid A_{m}\right)-\operatorname{tr}\left(\Gamma \alpha^{-1} \Gamma \mid B_{2-m}\right)=\sum_{C} J(C) .
$$

Here Γ is a discrete subgroup of $S L_{2}(\mathbf{R})$ such that $S L_{2}(\mathbf{R}) / \Gamma$ is of finite measure, m an arbitrary rational number, A_{m} the space of cusp forms of weight m with respect to Γ on the upper half complex plane \mathfrak{S}, B_{2-m} the space of integral forms of weight $2-m$ with respect to Γ, α an element of $S L_{2}(\mathbf{R})$ such that Γ and $\alpha^{-1} \Gamma \alpha$ are commensurable, and $J(C)$ a complex number defined for each class C of elements of $\Gamma \alpha \Gamma$ under a certain equivalence. The double cosets $\Gamma \alpha \Gamma$ and $\Gamma \alpha^{-1} \Gamma$ act on A_{m} and B_{2-m} respectively, under some conditions. An integral form of weight m is a holomorphic function $f(z)$ on \mathfrak{F} which satisfies $f(\gamma(z)) / f(z)=t(\gamma)(d \gamma(z) / d z)^{-m / 2}$ for every $\gamma \in \Gamma$ with a certain constant factor $t(\gamma)$, and which is holomorphic at every cusp; an integral form is called a cusp form if it vanishes at every cusp.

If m is an integer >2, then $B_{2-m}=\{0\}$. The formula in this case was obtained by Selberg [5] and Eichler [2]. If $m=2, B_{2-m}$ consists of the constants, and therefore $\operatorname{tr}\left(\Gamma \alpha^{-1} \Gamma \mid B_{2-m}\right)$ is simply the number of right or left cosets in $\Gamma \alpha^{-1} \Gamma$. This case is also included in [2]. It should also be mentioned that the generalized Riemann-Roch theorem of Weil [8] is closely related to the above formula when α belongs to the normalizer of Γ.

Although our formula is given for an arbitrary rational m, the cases of integral and half integral weight with respect to an arithmetic Γ seem most significant. If m is a half integer >2, we have again $B_{2-m}=\{0\}$, and the formula is of the same nature as in the case of integral $m>2$. However, if $m=3 / 2$, both A_{m} and B_{2-m} can be non-trivial. Especially if Γ is a congruence subgroup of $S L_{2}(\mathbf{Z})$, it is conjecturable that $B_{\frac{1}{2}}$ is spanned by theta series of the type

$$
\Sigma_{n} \psi(n) \exp \left(2 \pi i n^{2} r z\right)
$$

