LIMIT POINTS OF KLEINIAN GROUPS AND FINITE SIDED FUNDAMENTAL POLYHEDRA

BY

ALAN F. BEARDON and BERNARD MASKIT

University of Cambridge
England

State University of New York Stony Brook, N.Y. 11790, USA

Let G be a discrete subgroup of $S L(2, C) /\{ \pm 1\}$. Then G operates as a discontinuous group of isometries on hyperbolic 3-space, which we regard as the open unit ball $\mathbf{B}^{\mathbf{3}}$ in Euclidean 3 -space $\mathbf{E}^{\mathbf{3}}$. G operates on \mathbf{S}^{2}, the boundary of \mathbf{B}^{3}, as a group of conformal homeomorphisms, but it need not be discontinuous there. The set of points of \mathbb{S}^{2} at which G does not act discontinuously is the limit set $\Lambda(G)$.

If we fix a point 0 in \mathbf{B}^{3}, then the orbit of 0 under G accumulates precisely at $\Lambda(G)$. The approximation is, however, not uniform. We distinguish a class of limit points, called points of aproximation, which are approximated very well by translates of 0 . The set of points of approximation includes all loxodromic (including hyperbolic) fixed points, and includes no parabolic fixed points. In § 1 we give several equivalent definitions of point of approximation, and derive some properties. We remark that these points were first discussed by Hedlund [7].

Starting with a suitable point 0 in \mathbf{B}^{3}, we can construct the Dirichlet fundamental polyhedron P_{0} for G. It was shown by Greenberg [5] that even if G is finitely generated, P_{0} need not have finitely many sides. Our next main result, given in $\S 2$, is that if P_{0} is finite-sided, then every point of $\Lambda(G)$ is either a point of approximation or a cusped parabolic fixed point (roughly speaking a parabolic fixed point is cusped if it represents the right number of punctures in $\left.\left(\mathbf{S}^{2}-\Lambda(G)\right) / G\right)$.

The above theorem has several applications: one of these is a new proof of the following theorem of Ahlfors [1].

If P_{0} has finitely many sides, then the Euclidean measure of $\Lambda(G)$ is either 0 or 4π.
Our next main result, given in § 3, is that the above necessary condition for P_{0} to have finitely many sides is also sufficient. In fact, we prove that any convex fundamental polyhedron G has finitely many sides if and only if $\Lambda(G)$ consists entirely of points of 1-742908 Acta mathematica 132. Imprimé le 18 Mars 1974

