SUBDOMINANT SOLUTIONS OF THE DIFFERENTIAL EQUATION

$$
y^{\prime \prime}-\lambda^{2}\left(x-a_{1}\right)\left(x-a_{2}\right) \ldots\left(x-a_{m}\right) y=0
$$

BY

YASUTAKA SIBUYA

University of Minnesota, Minneapolis, Minn. U.S.A. (1)

I. Introduction

1. The solutions f_{k} and f_{-k}

In order to state the main results of this paper, we shall start with the differential equation

$$
\begin{equation*}
d^{2} y / d z^{2}-P\left(z, c_{1}, c_{2}, \ldots, c_{m}\right) y=0 \tag{1.1}
\end{equation*}
$$

where $c_{1}, c_{2}, \ldots, c_{m}$ are complex parameters and

$$
\begin{equation*}
P(z, c)=\left(z-c_{1}\right)\left(z-c_{2}\right) \ldots\left(z-c_{m}\right) . \tag{1.2}
\end{equation*}
$$

Let

$$
\begin{equation*}
\left\{\prod_{j=1}^{m}\left(1-c_{j} / z\right)\right\}^{\frac{1}{2}}=1+\sum_{n=1}^{\infty} b_{h}(c) z^{-h} \tag{1.3}
\end{equation*}
$$

where $b_{h}(c)$ are homogeneous polynomials of c_{1}, \ldots, c_{m} of degree h respectively, and let us put

$$
\mathcal{A}_{m}(z, c)=\left\{\begin{array}{l}
z^{\frac{1}{2} m}\left\{1+\sum_{h=1}^{\frac{1}{2}(m+1)} b_{h}(c) z^{-h}\right\} \quad(m=\text { odd }) \tag{1.4}\\
z^{\frac{1}{2} m}\left\{1+\sum_{h=1}^{\frac{1}{2} m} b_{h}(c) z^{-h}\right\}+\frac{b_{1+\frac{1}{2} m}(c)}{1+z} \quad(m=\text { even })
\end{array}\right.
$$

where

$$
\begin{equation*}
z^{r}=\exp \{r[\log |z|+i \arg z]\} \tag{1.5}
\end{equation*}
$$

for any constant r. Previously, P. F. Hsieh and Y. Sibuya [7] constructed a unique solution

$$
\begin{equation*}
y=y_{m}(z, c) \tag{1.6}
\end{equation*}
$$

of the differential equation (1.1) such that
(1) This paper was written with partial support from the National Science Foundation (GP-7041 X).

