FACETS AND NONFACETS OF CONVEX POLYTOPES

BY

M. A. PERLES and G. C. SHEPHARD

University of Washington, Seattle, U.S.A.(1)

1. Introduction

Throughout this paper we shall follow, with very few exceptions, the notation and terminology introduced by Professor B. Grünbaum in [5], and the reader is referred to this work for further information on the properties of convex polytopes. By an *equifacetted d-polytope* we mean any *d*-dimensional convex polytope in Euclidean space whose facets (that is, faces of dimension d-1) are all of the same combinatorial type. Many equifacetted polytopes are known, and we mention, by way of example, three classes of polytopes which have been extensively studied: the regular polytopes [3], the simplicial polytopes [5, §§ 4.5 and 9.2] and the cubical polytopes [5, §§ 4.6 and 9.4]. This paper is concerned with problems of the following kind: If *P* is a given *d*-dimensional convex polytope, does there exist an equifacetted (d+1)-polytope *Q* whose facets are all combinatorially equivalent to *P*? If the answer to this question is in the affirmative, then *P* will be called a *d*-nonfacet or a *facet*, and if the answer is in the negative, then *P* will be called a *d*-nonfacet.

In the literature only the case d=2 has been mentioned, and the problem of characterising the 2-facets and 2-nonfacets is completely straightforward. It is well known (see, for example, [15, p. 149]) that if a three-dimensional convex polytope Q has p_n 2-faces which are n-gons (n=3, 4, ...) then

$$3p_3 + 2p_4 + p_5 \ge 12.$$
 (1)

It is therefore impossible for all the 2-faces of Q to be *n*-gons with $n \ge 6$. On the other hand, the tetrahedron, cube, and regular dodecahedron are equifacetted 3-polytopes bounded by triangles, quadrilaterals, and pentagons respectively, so we deduce:

⁽¹⁾ This work has been partially supported by the National Science Foundation and by the United States Office of Naval Research under Research Grant Nonr(G) 00013-66. Reproduction in whole or in part is permitted for any purpose of the United States Government. 8-672908 Acta mathematica. 119. Imprimé le 17 novembre 1967.