FACETS AND NONFACETS OF CONVEX POLYTOPES

BY

M. A. PERLES and G. C. SHEPHARD

University of Washington, Seattle, U.S.A.(${ }^{1}$)

1. Introduction

Throughout this paper we shall follow, with very few exceptions, the notation and terminology introduced by Professor B. Grünbaum in [5], and the reader is referred to this work for further information on the properties of convex polytopes. By an equifacetted d-polytope we mean any d-dimensional convex polytope in Euclidean space whose facets (that is, faces of dimension $d-1$) are all of the same combinatorial type. Many equifacetted polytopes are known, and we mention, by way of example, three classes of polytopes which have been extensively studied: the regular polytopes [3], the simplicial polytopes [$5, \S \S 4.5$ and 9.2] and the cubical polytopes [5, §§ 4.6 and 9.4$]$. This paper is concerned with problems of the following kind: If P is a given d-dimensional convex polytope, does there exist an equifacetted $(d+1)$-polytope Q whose facets are all combinatorially equivalent to P ? If the answer to this question is in the affirmative, then P will be called a d-facet or a facet, and if the answer is in the negative, then P will be called a d-nonfacet or a nonfacet.

In the literature only the case $d=2$ has been mentioned, and the problem of characterising the 2 -facets and 2 -nonfacets is completely straightforward. It is well known (see, for example, [15, p. 149]) that if a three-dimensional convex polytope Q has $p_{n} 2$-faces which are n-gons $(n=3,4, \ldots)$ then

$$
\begin{equation*}
3 p_{3}+2 p_{4}+p_{5} \geqslant 12 . \tag{1}
\end{equation*}
$$

It is therefore impossible for all the 2 -faces of Q to be n-gons with $n \geqslant 6$. On the other hand, the tetrahedron, cube, and regular dodecahedron are equifacetted 3 -polytopes bounded by triangles, quadrilaterals, and pentagons respectively, so we deduce:
(1) This work has been partially supported by the National Science Foundation and by the United States Office of Naval Research under Research Grant Nonr(G) 00013-66. Reproduction in whole or in part is permitted for any purpose of the United States Government.
8-672908 Acta mathematica. 119. Imprimé le 17 novembre 1967.

