PARTIAL REGULARITY OF MAPPINGS BETWEEN EUCLIDEAN SPACES

BY
JAN BOMAN
The University of Stockholm, Stockholm, Sweden

1. Introduction

Let f be a locally bounded function from a p-dimensional Euclidean space E_{p} to a q-dimensional Euclidean space F_{q}. For a given subset Λ of $E_{p} \times F_{q}$ we will consider conditions on f of the following type: for each $(\xi, \eta) \in \Lambda, \xi \in E_{p}, \eta \in F_{q}$, the function $x \rightarrow\langle\eta, f(x)\rangle$ has a certain regularity property in the direction ξ. Here $\langle\cdot, \cdot\rangle$ denotes the inner product in F_{q}. The problem is to determine the condition on Λ in order that these conditions on f imply a corresponding (unrestricted) regularity property for the function f.

The answer to these problems is formulated in terms of the following two algebraic conditions on Λ. Let \mathbf{R} denote the real numbers.
(A) if Φ is a bilinear form $\left(E_{p}, F_{q}\right) \rightarrow \mathbf{R}$ and $\Phi(\Lambda)=0$, then $\Phi=0$.
($\hat{A})$ if Φ is a bilinear form $\left(E_{p}, F_{q}\right) \rightarrow \mathbf{R}$ of rank $\mathbf{1}$ and $\Phi(\Lambda)=0$, then $\Phi=0$.
As examples of our results we mention the following. If the regularity property is continuity or infinite differentiability, the condition (\hat{A}) is necessary and sufficient for an assertion of the above-mentioned type to hold. If we consider continuity of the first derivatives, the condition (A) plays the same role. If f is locally bounded and $\langle\eta, f\rangle$ is constant in the direction ξ for each $(\xi, \eta) \in \Lambda$, then it follows that f is constant if and only if (A) holds. The same assumption implies that f is a polynomial, if and only if (\hat{A}) holds.

If (A) holds, Λ contains at least $p q$ elements. On the other hand, there exist subsets Λ of $E_{p} \times F_{q}$, which satisfy (\hat{A}) and contain only $p+q-1$ elements. If $q=1$, then (A) and (\hat{A}) are equivalent and mean simply that the linear hull of $\{\xi ;(\xi, \eta) \in \Lambda, \eta \neq 0\}$ is equal to E_{p}. An analogous statement holds of course if $p=1$. Our results are trivial in case p or q is equal to one.

The above-mentioned problem becomes particularly interesting if the regularity in question is described by the modulus of continuity. Then both of the conditions (A) and 1-672908 Acta mathematica. 119. Imprimé le 15 novembre 1967.

