RANDOM DIFFERENCE EQUATIONS AND RENEWAL THEORY FOR PRODUCTS OF RANDOM MATRICES

BY

HARRY KESTEN(1)

Cornell University, Ithaca, N.Y., USA

Introduction

In this paper we study the limit distribution of the solution Y_n of the difference equation

$$Y_n = M_n Y_{n-1} + Q_n, \quad n \ge 1,$$
 (1.1)

where M_n and Q_n are random $d \times d$ matrices respectively d-vectors and Y_n also is a d-vector. Throughout we take the sequence of pairs $(M_n, Q_n), n \ge 1$, independently and identically distributed. The equation (1.1) arises in various contexts. We first met a special case in a paper by Solomon, [20] sect. 4, which studies random walks in random environments. Closely related is the fact that if $Y_n(i)$ is the expected number of particles of type i in the *n*th generation of a d-type branching process in a random environment with immigration, then $Y_n = (Y_n(1), ..., Y_n(d))$ satisfies (1.1) (Q_n represents the immigrants in the *n*th generation). (1.1) has been used for the amount of radioactive material in a compartment ([17]) and in control theory [9a]. Moreover, it is the principal feacture in a model for evolution and cultural inheritance by Cavalli-Sforza and Feldman [2]. Notice also that the *d*th order linear difference equation

$$y_n = \sigma_n^{(1)} y_{n-1} + \sigma_n^{(2)} y_{n-2} \dots + \sigma_n^{(d)} y_{n-d} + q_n$$

can be brought into the form (1.1), if one takes

 $Y_n = (y_{n+d-1}, y_{n+d-2}, ..., y_n), \quad Q_n = (q_{n+d-1}, 0, ..., 0)$

⁽¹⁾ Research supported by the NSF under grant GP 28109 and by a Fellowship from the John Simon Guggenheim Memorial Foundation.