ENUMERATION UNDER TWO REPRESENTATIONS OF THE WREATH PRODUCT ${ }^{(1)}$

BY
E. M. PALMER $\left({ }^{2}\right)$ and R. W. ROBINSON $\left({ }^{3}\right)$

Michigan State University, University of Michigan, East Lansing, Mich. 48823, USA

Ann Arbor, Mich. 48104, USA

1. Introduction

Enumeration problems which can be solved by applying Pólya's Theorem [9] or Burnside's Lemma [1] always require a formula for $N(A)$, the number of orbits of group A, or a formula for its cycle index $Z(A)$. For example, Pólya [9] expressed the cycle index of the wreath product $A[B]$ of A around B in terms of the cycle indices $Z(A)$ and $Z(B)$. This result played a key role in the enumeration of k-colored graphs [13] and nonseparable graphs [14].

The exponentiation group $[B]^{A}$ of two permutation groups A and B was defined by Harary in [3]. It is abstractly isomorphic to the wreath product of A around B. But while $A[B]$ has as its object set the cartesian product $X \times Y$ of the object sets of A and $B,[B]^{A}$ acts on Y^{X}, the functions from X into Y. Formulas for $Z\left(\left[S_{n}\right]^{S_{2}}\right)$ and $Z\left(\left[S_{2}\right]^{S_{n}}\right)$ were found by Harary [2] and Slepian [16] respectively. Harrison and High [6] have constructed an algorithm for finding $Z\left([B]^{S_{n}}\right)$ and have used their results to enumerate Post functions. In this paper we verify an explicit general formula for $Z\left([B]^{A}\right)$ in terms of $Z(A)$ and $Z(B)$ for any A and B. The result is easily obtained by substituting certain operators for the variables of $Z(A)$ and then letting them act on $Z(B)$. Several applications will then be sketched, including the enumeration of boolean functions, bicolored graphs, and Post functions.
${ }^{(1)}$ The authors would like to thank Professor Frank Harary for encouraging the research for this paper and for offering many helpful suggestions.
$\left.{ }^{(2}\right)$ Work supported in part by a grant from the National Science Foundation.
$\left.{ }^{(3}\right)$ Work supported in part by a grant (73-2502) from the US Air Force Office of Scientific Research.

