THE SUBSET OF PIECEWISE-LINEAR MAPPINGS IS DENSE IN THE SPACE OF K-QUASICONFORMAL MAPPINGS OF THE PLANE

BY

SIGBERT JAENISCH

Justus-Liebig-Universität, Giessen, Germany

1. Introduction

For each index n from the set N of natural numbers, let \mathcal{N}_n denote the regular net of equilateral triangles in the complex plane C, whose vertice set consists of the points $[p + (\frac{1}{2} + i\sqrt{3}/2)q]2^{-n}$ with integers p and q.

A mapping $\varphi: \mathbb{C} \to \mathbb{C}$ is called *linear*, if there are constants $a, b, c \in \mathbb{C}$ such that $\varphi(z) = az + bz^* + c$; the superscript star denotes complex conjugation. A mapping $\varphi: \mathbb{C} \to \mathbb{C}$ is said to be *piecewise-linear* with respect to the net \mathcal{N}_n , if its restrictions to the triangles of \mathcal{N}_n are linear mappings. We define the *piecewise-linearized mapping* $\varphi^{\langle n \rangle}: \mathbb{C} \to \mathbb{C}$ for a mapping $\varphi: \mathbb{C} \to \mathbb{C}$ with respect to the net \mathcal{N}_n as follows: $\varphi^{\langle n \rangle}$ is piecewise-linear with respect to \mathcal{N}_n , and it coincides with φ on the vertice set of \mathcal{N}_n .

The set of continuous mappings $\varphi: \mathbb{C} \to \mathbb{C}$ will be considered as a topological space with the compact-open topology; this induces convergence in the sense of uniform convergence on compact subsets. Approximation means convergence to a given mapping. Each continuous mapping $\varphi: \mathbb{C} \to \mathbb{C}$ is approximated by its piecewise-linearized mappings $\varphi^{\langle n \rangle}$.

In the subspace of quasiconformal mappings of the plane, there is the problem: can each φ be approximated by φ_n which are piecewise-linear with respect to \mathcal{N}_n ?

METHOD OF BEURLING AND AHLFORS. Let a quasiconformal mapping $\varphi: \mathbb{C} \to \mathbb{C}$ have maximal dilatation $K(\varphi) < \sqrt{3}$. Then, φ is approximated by the piecewise-linearized mappings $\varphi^{\langle n \rangle}$; $\varphi^{\langle n \rangle}$ is quasiconformal (Ahlfors [2], 768; [3], 298); $\varphi^{\langle n \rangle}$ has maximal dilatation $K(\varphi^{\langle n \rangle}) \leq \xi[K(\varphi)]$, where ξ is a certain function involving elliptic integrals (Agard [1], 739); for each index n, there are some φ such that $K(\varphi^{\langle n \rangle}) = \xi[K(\varphi)]$ holds (Agard [1], 739); moreover, there are some φ such that $K(\varphi^{\langle n \rangle}) = \xi[K(\varphi)]$ holds for all indices n ([4], 49).