k-MERSIONS OF MANIFOLDS

BY

SIDNIE DRESHER FEIT(1)

1. Introduction and statement of results

This paper contains a generalization of the Smale-Hirsch classification of immersions, and the Phillips classification of submersions.

Let M^n be an *n*-dimensional C^{∞} manifold and W^p a *p*-dimensional C^{∞} manifold. A C^{∞} mapping $f: M^n \to W^p$ is called a *k*-mersion if its rank is $\geq k$ everywhere. The set of *k*-mersions, endowed with the C^1 topology, is denoted $C^{\infty}(M^n, W^p; k)$. A *k*-regular homotopy between *k*-mersions *f* and *g* is a continuous map $G: I \to C^{\infty}(M^n, W^p; k)$ such that G(0) = f and G(1) = g.

A k-bundle map, $\psi: TM^n \to TW^p$ between the tangent spaces of M^n and W^p is a continuous fiber preserving map such that the restriction of ψ to any fiber is a linear map of rank at least k. The space of k-bundle maps with the compact open topology is denoted $T(M^n, W^p; k)$.

An *n*-mersion is an immersion, and an *n*-regular homotopy is usually called a regular homotopy. In 1958 and 1959, Smale [8], [10], published papers classifying immersions of spheres in euclidean spaces. Smale proved that if n < p, the regular homotopy classes of immersions of S^n in R^p are in one to one corresponence with the homotopy classes of sections of S^n into the bundle associated with TS^n whose fiber is the Stiefel manifold $V_{p,n}$ of *n* frames in *p*-dimensional euclidean space. Smale obtained this classification by proving a stronger result, namely, that the map $d: C^{\infty}(S^n, R^p; n) \to T(S^n, R^p; n)$ defined by d(f) = dfis a weak homotopy equivalence if n < p.

In 1959, Hirsch [3] extended this result to the case of immersions, $C^{\infty}(M^n, W^p; n)$, of a C^{∞} manifold in another, where n < p and ∂W^p is empty. Poenaru's exposition of this result [8] was the basis of Phillips' thesis, published in 1965 as [7]. Say that a manifold

⁽¹⁾ This work was performed in partial fulfillment of the requirements for the degree of Doctor of Philosophy at Cornell University, 1967. I wish to thank Professor R. Szczarba of Yale University, under whose direction this work was done.