PHYSICAL STATES ON A C*-ALGEBRA

BY

JOHAN F. AARNES

University of Oslo, Oslo, Norway (1)

1. Introduction

Let A be a C^* -algebra with identity 1. A physical state is a function $\varrho: A \to \mathbb{C}$ which is a state on each singly generated C^* -subalgebra of A. Here "singly generated" means generated by 1 and a single self-adjoint element $a \in A$. The present paper is devoted to a discussion of whether a physical state ϱ on A is *linear*, i.e. whether it is a state in the ordinary sense. In the proper physical interpretation, this is the problem of linearity of the expectation functional on the algebra of observables in quantum mechanics, cf. Mackey [8] and Kadison [6].

Mathematically, the problem is also closely related to the following problem: Let R be a von Neumann algebra, and let P be the lattice of orthogonal projections in R. A function $\mu: P \rightarrow \mathbf{R}^+$ such that $\mu(0) = 0$ is called a *completely additive measure* on P if

$$\mu(\sum_{i\in I} e_i) = \sum_{i\in I} \mu(e_i)$$

for any family $\{e_i\}_{i\in I}$ of mutually orthogonal projections in P. μ is a probability measure if $\mu(1)=1$. Given a probability measure μ on P one may ask whether there exists a positive normal state ϱ on R such that $\varrho | P = \mu$. This question, which poses what we may call the extension problem for measures (in non-commutative setting), was first suggested by Mackey. An affirmative solution for the special case where $R = \mathcal{L}(H) = all$ bounded linear operators on a separable Hilbert space H, with dim $H \ge 3$, was given in an ingenious paper by Gleason [5]. In the case where the measure is the dimension-function on the projections of a type II_1 -factor, the problem of extension is precisely the problem of the additivity of the trace [7], [9].

The connection between the extension problem for measures and the linearity problem

⁽¹⁾ Supported in part by NSF-GP-7683, U.S.A. and NAVF, Norway.

¹¹⁻⁶⁹²⁹⁰⁶ Acta mathematica. 122. Imprimé le 16 Juin 1969.