SUPPORTS AND SINGULAR SUPPORTS OF CONVOLUTIONS

BY

LARS HÖRMANDER

Stockholm

1. Introduction

If f is a distribution in \mathbb{R}^n we write supp f (resp. sing supp f) for the smallest closed set outside which f=0 (resp. $f \in \mathbb{C}^{\infty}$). Then the convolution theorem of Titchmarch [13], extended from one to n dimensions by Lions [10], states that

ch supp
$$(f_1 \times f_2) =$$
 ch supp $f_1 +$ ch supp $f_2; f_1, f_2 \in \mathcal{E}'.$ (1.1)

Here we have used the notation ch A for the convex hull of a set A in \mathbb{R}^n and written

$$A+B=\{x+y; x\in A, y\in B\}$$

if A and B are subsets of \mathbb{R}^n ; below A-B will be defined similarly.

The aim of this paper is to prove results similar to (1.1) where supports are replaced by singular supports. In Hörmander [5] it was proved in perfect analogy with (1.1) that

ch sing supp
$$(f_1 \times f_2) =$$
 ch sing supp $f_1 +$ ch sing supp f_2 (1.2)

provided that $f_1, f_2 \in \mathcal{E}'$ and either supp f_1 or supp f_2 consists of a finite number of points, a result due to F. John and B. Malgrange when the number of points is one. When f_2 is hypoelliptic in the sense of Ehrenpreis [4] it was also proved in Hörmander [6] that

ch sing supp
$$f_1 \subset$$
 ch sing supp $(f_1 \neq f_2)$ - ch sing supp f_2 , (1.3)

which is a weakened form of the non-trivial part of (1.2) that the left-hand side of (1.2) contains the right-hand side. However, not even this weaker result can be valid for arbitrary f_2 , for it may happen that $f_1 \times f_2 \in C_0^{\infty}$ although neither f_1 nor f_2 is in C_0^{∞} . In fact, Ehrenpreis [4] has proved that every $f_1 \in \mathcal{E}'$ with $f_1 \times f_2 \in C_0^{\infty}$ belongs to C_0^{∞} if and only if the Fourier transform f_2 of the distribution $f_2 \in \mathcal{E}'$ is slowly decreasing in the sense that for some constant A