ON THE NUMBER OF DIVISORS OF QUADRATIC POLYNOMIALS

BY
CHRISTOPHER HOOLEY
Bristol University, England

1. Introduction

The problem of determining the asymptotic behaviour, as $x \rightarrow \infty$, of the divisor sum

$$
S(x)=\sum_{n \leqslant x} d\left(n^{2}+a\right),
$$

where $d(\mu)$ denotes the number of (positive) divisors of μ, has been mentioned by a number of writers [1], [2], [5], [8]. When we consider this problem it is not difficult to see that the case where $-a$ is a perfect square k^{2}, say, is exceptional, since then $n^{2}+a$ can be factorized as $(n-k)(n+k)$. In this case the sum is almost identical with the sum

$$
\sum_{n \leqslant x} d(n) d(n+2 k),
$$

which has been considered by Ingham [7]; in fact a slight adaptation of Ingham's method shews here that

$$
S(x)=A_{1}(a) x \log ^{2} x+O(x \log x) \quad\left(a=-k^{2}\right)
$$

We shall not, therefore, refer to this case again. In the case when $-a$ is not a perfect square for some considerable time it has been commonly realized (see, for example, the remarks by Bellman [1] and the author [5]) that it is possible to deduce an asymptotic formula

$$
S(x)=A_{2}(a) x \log x+O(x)
$$

by a familiar elementary method; a proof of such a formula (with a less precise error term) has recently been supplied by Scourfield [8].

