RANDOM WALK ON COUNTABLY INFINITE ABELIAN GROUPS

BY
H. KESTEN and F. SPITZER
Cornell University, Ithaca, N. Y., U.S.A.

1. Introduction

Given a probability measure μ on a countably infinite Abelian group \mathfrak{G} we propose to study the properties of the potential kernels

$$
\begin{equation*}
\sum_{n=0}^{\infty} \mu^{(n)}(x) \quad \text { and } \sum_{n=0}^{\infty}\left[\mu^{(n)}(0)-\mu^{(n)}(x)\right], \quad x \in \mathscr{G} . \tag{1.1}
\end{equation*}
$$

Here 0 is the identity element of the (additive) group ${ }^{(G)}, \mu^{(0)}$ is the probability measure all of whose mass is concentrated at $0, \mu^{(1)}=\mu$ and $\mu^{(n)}$ is the n-fold convolution of μ with itself.

Roughly speaking, the purpose of this paper is to imitate and extend basic results in [10] (Chapter 7 and parts of earlier chapters). There the attention was strictly confined to the groups $\mathfrak{G}=Z_{d}$, the groups of d-dimensional integers, or lattice points in Euclidean space of dimension d. Thus the basic ideas, methods, and notation are exactly those in [10] when possible-and most of the difficulties which arise because \mathscr{G} is more complicated than Z_{d} can be overcome by the use of certain measures induced by the given measure μ on cyclic subgroups of $(\mathbb{S}$.

It will be assumed throughout that the measure μ is aperiodic, i.e. that the support of μ generates all of (G). (Note however that $\mathfrak{G S}$ must be infinite. When $\mathfrak{G s}$ is finite everything we do is either trivial or well known but the results are by no means the same.) Given μ we define on (GS the Markov process (random walk) X_{n} with transition function

$$
\begin{aligned}
& P_{x}\left[X_{1}=y\right]=P(x, y)=\mu(y-x) \\
& P_{x}\left[X_{n}=y\right]=P_{n}(x, y)=\mu^{(n)}(y-x), \quad x, y \in \mathscr{G}, n \geqslant 0 .
\end{aligned}
$$

Here $P_{x}[\cdot]$ is the probability measure induced by the joint probabilities for finite paths starting at $X_{0}=x$, and the associated expectation will be denoted by $E_{x}[\cdot]$.

