HIGHER MONOTONICITY PROPERTIES OF CERTAIN STURM-LIOUVILLE FUNCTIONS

BY

LEE LORCH

University of Alberta, Edmonton, Canada (1)

AND

PETER SZEGO

University of Santa Clara, Santa Clara, Calif., U.S.A.(1)

1. Introduction

An examination of tables [3; 5; 8; 12; 15] of the positive(²) zeros of familiar special functions, such as Bessel functions(³) and various orthogonal polynomials, suggests that sequences of differences constructed from those zeros behave in a regular manner. Indeed, certain heuristically observed regularities are exploited systematically by table-makers as checks on their computations [1; 5, p. 404; 12, esp. pp. liii-liv].(⁴)

Rigorous study of this useful phenomenon, however, does not appear to have progressed beyond consideration of the second differences of zeros of Sturm-Liouville functions (solutions of the Sturm-Liouville differential equation y'' + f(x)y = 0). Here Sturm's comparison theorem [13; 14, pp. 19-21] has been the principal tool.

For instance, denoting by $\{c_{\nu n}\}$, n=1,2,..., the ascending sequence of positive zeros of an arbitrary Bessel function $C_{\nu}(x)$ of order ν , Ch. Sturm [13, pp. 173–175] used his comparison theorem to show that the second (forward) differences $\Delta^2 c_{\nu n}$, n=1,2,..., are all positive if $|\nu| < \frac{1}{2}$ and are all negative if $|\nu| > \frac{1}{2}$. In the same manner, similar results have been established for Hermite, Laguerre and Legendre polynomials and other Sturm-Liouville unctions.

^{(&}lt;sup>1</sup>) Some of this work was done a few years ago when the first-named author received partial support from the (U.S.) National Science Foundation through Research Grant NSF G-3663 to Philander Smith College, Little Rock, Arkansas. Its completion was facilitated by a grant from the University of Alberta General Research Fund. Both authors thank Professor Gabor Szegö for his interest and encouragement.

⁽²⁾ All quantities discussed throughout this paper are assumed to be real.

⁽³⁾ By a Bessel function we mean any real solution of the Bessel differential equation, not merely J_{ν} or Y_{ν} .

⁽⁴⁾ The regularities now used to check tables are not the ones discussed in this paper. However, the ones established here can also be used conveniently for this purpose.