# RANDOM WALKS WITH SPHERICAL SYMMETRY 

BY<br>\section*{J. F. C. KINGMAN}<br>Pembroke College, Cambridge, England

## 1. Introduction

Let $\mathrm{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ be a random $n$-vector with spherical symmetry, that is, a random variable taking values in Euclidean $n$-space $R^{n}$ with the property that, if $A$ is any measurable subset of $R^{n}$, and $A^{\prime}$ is obtained from $A$ by rotation about the origin, then

$$
P(\mathbf{X} \in A)=P\left(\mathbf{X} \in A^{\prime}\right)
$$

Then the distribution of $\mathbf{X}$ is determined by that of its length

$$
X=|\mathbf{X}|=\left\{\sum_{i=1}^{n} X_{i}^{2}\right\}^{\frac{1}{4}},
$$

and in particular the characteristic function of $\mathbf{X}$ is given by

$$
\begin{equation*}
\Phi(\mathbf{t})=E\left(e^{i \mathbf{t} \cdot \mathbf{x}}\right)=\boldsymbol{E}\left(e^{i t X \cos \theta}\right) \tag{1}
\end{equation*}
$$

where $t=|\mathbf{t}|$, and $\theta$ is the angle between the vectors $\mathbf{t}$ and $\mathbf{X}$. Clearly $\theta$ and $X$ are independent, $\theta$ having the distribution which a uniformly distributed unit vector makes with a fixed axis.

It is readily shown that, when $n \geqslant 2, \lambda=\cos \theta$ has a probability density

$$
\begin{equation*}
f_{n}(\lambda)=\frac{\left(\frac{1}{2} n-1\right)!}{\pi^{\frac{1}{2}}\left(\frac{1}{2} n-\frac{3}{2}\right)!}\left(1-\lambda^{2}\right)^{\frac{1}{2} n-\frac{3}{2}} \quad(-1 \leqslant \lambda \leqslant 1) \tag{2}
\end{equation*}
$$

Hence, for any complex $u$,

$$
\begin{aligned}
E\left(e^{i u \cos \theta}\right) & =\frac{\left(\frac{1}{2} n-1\right)!}{\pi^{\frac{1}{2}}\left(\frac{1}{2} n-\frac{3}{2}\right)!} \int_{-1}^{1} e^{i u \lambda}\left(1-\lambda^{2}\right)^{\frac{1}{2} n-\frac{3}{2}} d \lambda \\
& =J_{\frac{1}{2} n-1}(u)\left(\frac{1}{2} u\right)^{-\frac{1}{2} n+1}\left(\frac{1}{2} n-1\right)!
\end{aligned}
$$

by the Poisson integral $([16], 48)$ for the Bessel function $J \cdot(\cdot)$.

