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1. Introduction

In this paper we present a complete solution to the following problem: if G is an
arbitrary bounded open set in the complex plane, characterize those functions in G that
can be obtained as the bounded pointwise limits of polynomials in @&. Roughly speaking,
the answer is that a function is such a limit if and only if it has a bounded analytie eon-
tinuation throughout a certain bounded open set G* that contains G. This set @* is the in-
side of the “outer boundary” of G. More precisely, if G is a bounded open set and if H is
the unbounded component of the complement of G- (the closure of @), then G* denotes the
complement of H~.

A sequence of polynomials {p,} is said to converge boundedly to a function f in an
open set G if the polynomials are uniformly bounded in G, and if p,(z) converges to f(z)
at each point z€G. It follows that f is bounded in G. Also, by the Stieltjes-Osgood theorem
(see [8], Chapter II, § 7) the convergence is uniform on compact subsets of G and thus f

is analytic in G.

MaIN THEOREM. Let G be a bounded open set in the plane and let f be a bounded analytic
function in G. If there is o function F, analytic in G* and agreeing with f in G, with | F(z)| <
M in G*, then there is a sequence of polynomials {p,} such that

(i) lim p,(z) = F(z) (z€G™),
(i) |pa(2)| <M (€6G%; n=1,2,..).

Conversely, if there is a sequence of polynomials converging to f at each point of G, and
uniformly bounded in G, then there is a bounded analytic function F in G* that agrees with f in G.
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