CUTS

BY

E. MICHAEL

University of Washington, Seattle, Wash., U.S.A.(1)

1. Introduction

What does it mean to cut a topological space X along a subset A? Consider two examples:

- (1) X is the plane, and A is a triod (i.e. a Y).
- (2) X is a Möbius band, and A is the equator.

Note that both sets A have empty interior, or, in the terminology of [20], are *thin*; this is necessary if "cutting" is to make much sense. Now in both examples, it is intuitively clear what happens when X is cut along A: The space X is replaced by a space X, and if (²) $p: X \rightarrow X$ is the function which maps each point of X to the point of X where it came from before cutting, while A denotes $p^{-1}(A)$, then p maps X - A homeomorphically onto X - A. In (1), X is the plane with a (topologically) circular hole, and A is the boundary of the hole. In (2), where cutting is occasionally performed as a parlor trick, X is a cylinder, A is a circle which is one of the two components of the boundary of X, and p|A is a double covering. Let us try to identify those common properties of p and $A \subset X$ which will lead to a general concept of cutting. (³)

First of all, p is continuous and closed, and—as observed above—maps X - A homeomorphically onto X - A. Moreover, in both examples p | A is finite-to-one, but in general this requirement must be somewhat relaxed, as the following example shows:

(3) In the plane, X consists of the intervals joining (0,0) to (x,1) for all x in $S = \{1, \frac{1}{2}, \frac{1}{3}, ..., 0\}$, and $A = \{(0,0)\}$.

⁽¹⁾ Supported in part by a National Science Foundation grant.

⁽²⁾ We use $\rightarrow \rightarrow$ to denote an *onto* map.

⁽³⁾ It should be noted that a somewhat different method of cutting was implicitly considered by R. H. Fox in [7]. In many important cases (including Examples (1), (2), and (3)), Fox's cuts agree with ours; in general, however, Fox's map p_F is a restriction of our map p, and the range of p_F (unlike the range of p) need not be all of X. The exact relation between these two ways of cutting will be established in section 16.

¹⁻⁶⁴²⁹⁴⁵ Acta Mathematica. 111. Imprimé le 11 mars 1964