## CUTS

## BY

## E. MICHAEL

University of Washington, Seatte, Wash., U.S.A.(1)

## 1. Introduction

What does it mean to cut a topological space $X$ along a subset $A$ ? Consider two examples:
(1) $X$ is the plane, and $A$ is a triod (i.e. a $Y$ ).
(2) $X$ is a Möbius band, and $A$ is the equator.

Note that both sets $A$ have empty interior, or, in the terminology of [20], are thin; this is necessary if "cutting" is to make much sense. Now in both examples, it is intuitively clear what happens when $X$ is cut along $A$ : The space $X$ is replaced by a space $X$, and if $\left({ }^{2}\right)$ $p: \mathbf{X} \rightarrow X$ is the function which maps each point of $\mathbf{X}$ to the point of $X$ where it came from before cutting, while $\mathbf{A}$ denotes $p^{-1}(A)$, then $p$ maps $\mathbf{X}-\mathbf{A}$ homeomorphically onto $X-A$. In (1), $\mathbf{X}$ is the plane with a (topologically) circular hole, and $\mathbf{A}$ is the boundary of the hole. In (2), where cutting is occasionally performed as a parlor trick, $\mathbf{X}$ is a cylinder, $\mathbf{A}$ is a circle which is one of the two components of the boundary of $\mathbf{X}$, and $p \mid \mathbf{A}$ is a double covering. Let us try to identify those common properties of $p$ and $\mathbf{A} \subset \mathbf{X}$ which will lead to a general concept of cutting. ${ }^{(3}$ )

First of all, $p$ is continuous and closed, and-as observed above-maps $\mathbf{X}$ - $\mathbf{A}$ homeomorphically onto $X-A$. Moreover, in both examples $p \mid \mathbf{A}$ is finite-to-one, but in general this requirement must be somewhat relaxed, as the following example shows:
(3) In the plane, X consists of the intervals joining $(0,0)$ to $(x, 1)$ for all $x$ in $S=$ $\left\{1, \frac{1}{2}, \frac{1}{3}, \ldots, 0\right\}$, and $A=\{(0,0)\}$.

[^0]
[^0]:    ${ }^{(1)}$ Supported in part by a National Science Foundation grant.
    $\left.{ }^{(2}\right)$ We use $\rightarrow \rightarrow$ to denote an onto map.
    $\left.{ }^{(3}\right)$ It should be noted that a somewhat different method of cutting was implicitly considered by R. H. Fox in [7]. In many important cases (including Examples (1), (2), and (3)), Fox's cuts agree with ours; in general, however, Fox's map $p_{F}$ is a restriction of our map $p$, and the range of $p_{F}$ (unlike the range of $p$ ) need not be all of $X$. The exact relation between these two ways of cutting will be established in section 16.

    1-642945 Acta Mathematica. 111. Imprimé le 11 mars 1964

