Bounded point evaluations and balayage

Torbjörn Kolsrud

0. Introduction

The problem treated in this paper can be formulated as follows: Define W as the closure of $C_{0}^{\infty}\left(\mathbf{R}^{d}\right)$ in the norm $\left\{\int|\operatorname{grad} f|^{2} d x\right\}^{1 / 2}$. If E is open and bounded let $H(E)$ be the subspace of W consisting of functions harmonic in E. If E is compact let $H(E)$ be the closure in W of functions harmonic in some neighbourhood of E. (Here $d \geqq 3$; if $d=2$ we replace $C_{0}^{\infty}\left(\mathbf{R}^{d}\right)$ by $C_{0}^{\infty}(D)-D$ the open unit disc - and we assume that $E \subset \subset D$.)

A point $a \in \bar{E}$ for which the mapping $f \rightarrow f(a)$ is bounded on $H(E)$ is called a bounded point evaluation (BPE) for $H(E)$ and our aim is to characterize these points.

In Fernström-Polking [4] a similar problem is treated for a more general elliptic differential operator acting on $L^{p}(E), E$ a compact set in \mathbf{R}^{d}. (For a more detailed discussion on BPEs we refer to that paper and the references there.) Compared to [4] we are here dealing with a special case; we can then make use of other methods, specific to this problem. In particular we apply the operation of sweeping out a measure, balayage. We can also take care of the case when E is an open set.

We get several conditions characterizing the BPEs. Two of these are to be stressed cf. [4, theorems 1 and 3]): The first one is that the fundamental solution of the Laplace operator with a pole at a (the function $x \rightarrow$ const $|x-a|^{2-d}$ if $d \geqq 3$) can be continued from E^{c} to \mathbf{R}^{d} so as to be an element of $H(E)$. Moreover, this new function is the Newton potential of the Dirac measure δ_{a} at a swept out onto E^{c}. The second one is a Wiener type condition, the BPEs are precisely the points for which E^{c} is subject to a certain kind of thinness.

The main references are Cartan [2] and Landkof [6]. Also Hedberg [5] is a good reference for sections I and II.

We will use the following notation:
For a (Borel) set $B \subset \mathbf{R}^{d}$ ($d \geqq 3$ in sections I-IV, $d=2$ in section V) B^{0} its interior, \bar{B} its closure, ∂B its boundary and B^{c} its complement. $C_{0}^{\infty}(G)$ is the space

