Bounded point evaluations and balayage

Torbjörn Kolsrud

0. Introduction

The problem treated in this paper can be formulated as follows: Define W as the closure of $C_0^{\infty}(\mathbb{R}^d)$ in the norm $\{\int |\operatorname{grad} f|^2 dx\}^{1/2}$. If E is open and bounded let H(E) be the subspace of W consisting of functions harmonic in E. If E is compact let H(E) be the closure in W of functions harmonic in some neighbourhood of E. (Here $d \ge 3$; if d=2 we replace $C_0^{\infty}(\mathbb{R}^d)$ by $C_0^{\infty}(D) - D$ the open unit disc — and we assume that $E \subset D$.)

A point $a \in \overline{E}$ for which the mapping $f \rightarrow f(a)$ is bounded on H(E) is called a *bounded point evaluation* (BPE) for H(E) and our aim is to characterize these points.

In Fernström—Polking [4] a similar problem is treated for a more general elliptic differential operator acting on $L^{p}(E)$, E a compact set in \mathbb{R}^{d} . (For a more detailed discussion on BPEs we refer to that paper and the references there.) Compared to [4] we are here dealing with a special case; we can then make use of other methods, specific to this problem. In particular we apply the operation of sweeping out a measure, balayage. We can also take care of the case when E is an open set.

We get several conditions characterizing the BPEs. Two of these are to be stressed cf. [4, theorems 1 and 3]): The first one is that the fundamental solution of the Laplace operator with a pole at a (the function $x \rightarrow \text{const} |x-a|^{2-d}$ if $d \ge 3$) can be continued from E^c to \mathbb{R}^d so as to be an element of H(E). Moreover, this new function is the Newton potential of the Dirac measure δ_a at a swept out onto E^c . The second one is a Wiener type condition, the BPEs are precisely the points for which E^c is subject to a certain kind of thinness.

The main references are Cartan [2] and Landkof [6]. Also Hedberg [5] is a good reference for sections I and II.

We will use the following notation:

For a (Borel) set $B \subset \mathbb{R}^d$ $(d \ge 3$ in sections I—IV, d = 2 in section V) B^0 its interior, \overline{B} its closure, ∂B its boundary and B^c its complement. $C_0^{\infty}(G)$ is the space